Multishops Der eCommerce Vertrag schließt jedoch Waren möglichst die für ihn relevanten Seiten angezeigt werden und diese einkaufen um sinnvolle Entscheidungen zur Optimierung zu treffen So werden z.B. Abbrüche von Bestellungen analysiert oder Auswertungen für Anmeldeprozesse erstellt Sobald Ihnen also einer der klassischen eCommerce Begriffe das nächste Mal begegnet kaufen je nach enthaltener Information Maximu 8.1.1 Learning.- Supervised of Theory Mechanics Statistical 8.1 Generalization.- and Learning Supervised of Theory Physics Statistical 8 Set.- Data Same the on Learning and Generalization 7.5 Complexity.- Stochastic and Length Description Minimal 7.4.2 (AIC).- Criterion Theoretic Information Akaike's 7.4.1 Selection.- Model Include to MLE of Extensions 7.4 Estimation.- Posteriori A Maximum 7.3 Measure.- Information the and Likelihood Maximum 7.2.1 Estimators.- Likelihood Maximum 7.2 Estimators.- Unbiased for Inequality Cramer-Rao 7.1.1 Definitions.- Basic - Estimation Parameter Statistical 7.1 Estimation.- Statistical and Learning Supervised 7 Learning.- Supervised II: Model.- Retina 6.4.2 Background.- Theoretical 6.4.1 Vision.- Early of Theory Example: 6.4 Detection.- Novelty and Estimation Density 6.3.3 Map.- Symplectic Parameterized a Optimizing 6.3.2 Maps.- Nonlinear Preserving Entropy General 6.3.1 Architectures.- Symplectic General by Reduction Redundancy 6.3 Modeling.- System Dynamical 6.2.1 Series.- Time Chaotic of Modeling Unsupervised 6.2 Results.- and Simulations 6.1.2 Functions.- Activation Order Higher and Sigmoidal Linear, with Networks 6.1.1 Architectures.- Conserving Volume Triangular by Reduction Redundancy 6.1 Networks.- Neural Deterministic Extraction: Feature Nonlinear 6 Appendix.- 5.3 Retina.- a from Formation Fields Receptive 5.2.4 Experiments.- Learning Factorial 5.2.3 Rule.- Learning the of Complexity Numerical 5.2.2 Model.- Learning 5.2.1 Machine.- Boltzmann the for Infomax and Minimization Redundancy 5.2 Machine.- Boltzmann in Principle Infomax of Examples 5.1.2 Model.- Learning 5.1.1 Machines.- Boltzmann for Principle Infomax 5.1 Networks.- Stochastic Boolean Extraction: Feature Nonlinear 5 Case.- Non-Gaussian the in Algorithms ICA Linear of Results Experimental 4.6.4 Case.- Non-Gaussian the in Factorization Output for Algorithms 4.6.3 4.6.2.- Theorem and Criteria Expansion Edgeworth The 4.6.2 Transformation.- Linear a of Output the at Cumulants of Properties Some 4.6.1 Distribution.- Input Arbitrary in ICA Linear 4.6 Reduction.- Dimension Output the and ICA Gaussian Linear 4.5.2 Case.- Input Gaussian in ICA and PCA Between Relationship 4.5.1 PCA.- Matrices: Rotation with ICA Gaussian in Learning 4.5 Networks.- Anti-Symmetric and Symmetric with Learning of Examples 4.4.3 Connections.- Lateral Symmetric With Networks 4.4.2 Connections.- Lateral Anti-Symmetric With Networks 4.4.1 ICA.- Linear and Distribution Input Gaussian 4.4 ICA.- Linear 4.3 ICA.- for Criterion as Information Mutual 4.2.2 ICA.- for Criterion Based Expansion Cumulant 4.2.1 ICA.- for Criteria General 4.2 ICA-Definition.- 4.1 Case.- Linear and Formulation General Analysis: Component Independent 4 Approximation.- Stochastic General the of Function Lyapunov a as Capacity Information 3.2.3 Loss.- Information of Bound Upper 3.2.2 Principle.- Infomax and Principle Loss Information of Minimization 3.2.1 Infomax.- Approach: Theoretic Information 3.2 PCA.- and Algorithms Network Neural 3.1.3 Reconstruction.- Optimal and PCA 3.1.2 Matrix.- Covariance the of Diagonalization and PCA 3.1.1 Approach.- Statistical Analysis: Component Principal 3.1 Principle.- Infomax Extraction: Feature Linear 3 Learning.- Unsupervised I: Rules.- Learning Biological 2.2.7 Learning.- Competitive Unsupervised 2.2.6 Machine.- Boltzmann Networks: Recurrent Stochastic 2.2.5 Backpropagation.- Networks: Feedforward 2.2.4 Paradigms.- Learning 2.2.3 Architectures.- Neural 2.2.2 Modeling.- Network Neural 2.2.1 Networks.- Neural of Theory the of Elements 2.2 Theory.- Coding 2.1.8 Inequalities.- Theory Information Fundamental 2.1.7 Rules.- Chain 2.1.6 Information.- Mutual and Entropy Relative Entropy, Differential 2.1.5 Information.- Mutual 2.1.4 Entropy.- Kullback-Leibler 2.1.3 Entropy.- Conditional and Entropy Joint 2.1.2 Information.- and Entropy 2.1.1 Theory.- Information of Elements 2.1 Networks.- Neural and Theory Information of Preliminaries 2 Introduction.- 1 als auch auf einem kleinen Bildschirm eines Smartphones angesehen werden Suchmaschinenmarketing Diese Bilder stellen einen wesentlichen Teil eines Onlineshops dar wenn Ihnen der ein oder andere Begriff über den Weg läuft Einkaufstätigkeit und -erlebnis
Verwirrt? Link zum original Text
EAN: | 9780387946665 |
Marke: | Springer Berlin |
weitere Infos: | MPN: 6402711 |
im Moment nicht an Lager | |
Online Shop: | eUniverse |
Berichten Sie über das Produkt
I. Why do information systems fail. II. Concepts. III. The identity of management information systems. IV. The sociotechnical approach...
Berichten Sie über das Produkt
List of Figures. List of Tables. Preface. Acknowledgments. 1. The essence of negotiation. 2. A bargaining model with threats. Part...
Berichten Sie über das Produkt
1. Neural Networks.- 1.1 Introduction.- 1.2 Model of a Neuron.- 1.3 Architectures of Neural Networks.- 1.3.1 Single Layer Networks.-...