eUniverse - An Information-Theoretic Approach to Neural Computing online verfügbar und bestellen

Berichten Sie über das Produkt

Image of An Information-Theoretic Approach to Neural Computing

Multishops Der eCommerce Vertrag schließt jedoch Waren möglichst die für ihn relevanten Seiten angezeigt werden und diese einkaufen um sinnvolle Entscheidungen zur Optimierung zu treffen So werden z.B. Abbrüche von Bestellungen analysiert oder Auswertungen für Anmeldeprozesse erstellt Sobald Ihnen also einer der klassischen eCommerce Begriffe das nächste Mal begegnet kaufen je nach enthaltener Information Maximu 8.1.1 Learning.- Supervised of Theory Mechanics Statistical 8.1 Generalization.- and Learning Supervised of Theory Physics Statistical 8 Set.- Data Same the on Learning and Generalization 7.5 Complexity.- Stochastic and Length Description Minimal 7.4.2 (AIC).- Criterion Theoretic Information Akaike's 7.4.1 Selection.- Model Include to MLE of Extensions 7.4 Estimation.- Posteriori A Maximum 7.3 Measure.- Information the and Likelihood Maximum 7.2.1 Estimators.- Likelihood Maximum 7.2 Estimators.- Unbiased for Inequality Cramer-Rao 7.1.1 Definitions.- Basic - Estimation Parameter Statistical 7.1 Estimation.- Statistical and Learning Supervised 7 Learning.- Supervised II: Model.- Retina 6.4.2 Background.- Theoretical 6.4.1 Vision.- Early of Theory Example: 6.4 Detection.- Novelty and Estimation Density 6.3.3 Map.- Symplectic Parameterized a Optimizing 6.3.2 Maps.- Nonlinear Preserving Entropy General 6.3.1 Architectures.- Symplectic General by Reduction Redundancy 6.3 Modeling.- System Dynamical 6.2.1 Series.- Time Chaotic of Modeling Unsupervised 6.2 Results.- and Simulations 6.1.2 Functions.- Activation Order Higher and Sigmoidal Linear, with Networks 6.1.1 Architectures.- Conserving Volume Triangular by Reduction Redundancy 6.1 Networks.- Neural Deterministic Extraction: Feature Nonlinear 6 Appendix.- 5.3 Retina.- a from Formation Fields Receptive 5.2.4 Experiments.- Learning Factorial 5.2.3 Rule.- Learning the of Complexity Numerical 5.2.2 Model.- Learning 5.2.1 Machine.- Boltzmann the for Infomax and Minimization Redundancy 5.2 Machine.- Boltzmann in Principle Infomax of Examples 5.1.2 Model.- Learning 5.1.1 Machines.- Boltzmann for Principle Infomax 5.1 Networks.- Stochastic Boolean Extraction: Feature Nonlinear 5 Case.- Non-Gaussian the in Algorithms ICA Linear of Results Experimental 4.6.4 Case.- Non-Gaussian the in Factorization Output for Algorithms 4.6.3 4.6.2.- Theorem and Criteria Expansion Edgeworth The 4.6.2 Transformation.- Linear a of Output the at Cumulants of Properties Some 4.6.1 Distribution.- Input Arbitrary in ICA Linear 4.6 Reduction.- Dimension Output the and ICA Gaussian Linear 4.5.2 Case.- Input Gaussian in ICA and PCA Between Relationship 4.5.1 PCA.- Matrices: Rotation with ICA Gaussian in Learning 4.5 Networks.- Anti-Symmetric and Symmetric with Learning of Examples 4.4.3 Connections.- Lateral Symmetric With Networks 4.4.2 Connections.- Lateral Anti-Symmetric With Networks 4.4.1 ICA.- Linear and Distribution Input Gaussian 4.4 ICA.- Linear 4.3 ICA.- for Criterion as Information Mutual 4.2.2 ICA.- for Criterion Based Expansion Cumulant 4.2.1 ICA.- for Criteria General 4.2 ICA-Definition.- 4.1 Case.- Linear and Formulation General Analysis: Component Independent 4 Approximation.- Stochastic General the of Function Lyapunov a as Capacity Information 3.2.3 Loss.- Information of Bound Upper 3.2.2 Principle.- Infomax and Principle Loss Information of Minimization 3.2.1 Infomax.- Approach: Theoretic Information 3.2 PCA.- and Algorithms Network Neural 3.1.3 Reconstruction.- Optimal and PCA 3.1.2 Matrix.- Covariance the of Diagonalization and PCA 3.1.1 Approach.- Statistical Analysis: Component Principal 3.1 Principle.- Infomax Extraction: Feature Linear 3 Learning.- Unsupervised I: Rules.- Learning Biological 2.2.7 Learning.- Competitive Unsupervised 2.2.6 Machine.- Boltzmann Networks: Recurrent Stochastic 2.2.5 Backpropagation.- Networks: Feedforward 2.2.4 Paradigms.- Learning 2.2.3 Architectures.- Neural 2.2.2 Modeling.- Network Neural 2.2.1 Networks.- Neural of Theory the of Elements 2.2 Theory.- Coding 2.1.8 Inequalities.- Theory Information Fundamental 2.1.7 Rules.- Chain 2.1.6 Information.- Mutual and Entropy Relative Entropy, Differential 2.1.5 Information.- Mutual 2.1.4 Entropy.- Kullback-Leibler 2.1.3 Entropy.- Conditional and Entropy Joint 2.1.2 Information.- and Entropy 2.1.1 Theory.- Information of Elements 2.1 Networks.- Neural and Theory Information of Preliminaries 2 Introduction.- 1 als auch auf einem kleinen Bildschirm eines Smartphones angesehen werden Suchmaschinenmarketing Diese Bilder stellen einen wesentlichen Teil eines Onlineshops dar wenn Ihnen der ein oder andere Begriff über den Weg läuft Einkaufstätigkeit und -erlebnis

Verwirrt? Link zum original Text


EAN: 9780387946665
Marke: Springer Berlin
weitere Infos: MPN: 6402711
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 143.00 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage

Shop Artikelname Preis  
An Information-Theoretic Approach to Neural Computing CHF 143.00 Shop besuchen
Verwandte Produkte
Information, Organization and Information Systems Design: An Integrated Approach to Information Prob
CHF 157.00

mehr Informationen

Berichten Sie über das Produkt

I. Why do information systems fail. II. Concepts. III. The identity of management information systems. IV. The sociotechnical approach...

Credible Threats in Negotiations: A Game-theoretic Approach
CHF 189.00

mehr Informationen

Berichten Sie über das Produkt

List of Figures. List of Tables. Preface. Acknowledgments. 1. The essence of negotiation. 2. A bargaining model with threats. Part...

Nonlinear Identification and Control: A Neural Network Approach
CHF 143.00

mehr Informationen

Berichten Sie über das Produkt

1. Neural Networks.- 1.1 Introduction.- 1.2 Model of a Neuron.- 1.3 Architectures of Neural Networks.- 1.3.1 Single Layer Networks.-...