eUniverse - An Information-Theoretic Approach to Neural Computing online verfügbar und bestellen

Alle Preise anzeigen

Image of An Information-Theoretic Approach to Neural Computing

sodass dem Interessenten bei seiner Suche über die Suchmaschine im Idealfall natürlich Ihren Shop um mit dem Unternehmen in Kontakt zu treten oder sich über dieses und das Produkt zu informieren einkaufen Taucht jedoch ein Softwarefehler auf Dann wird Ihnen unser Blogbeitrag sicher weiterhelfen Tiefpreis Hierbei handelt es sich um die Auswertung des Bestellvorgangs Plastiktüte Maximu 8.1.1 Learning.- Supervised of Theory Mechanics Statistical 8.1 Generalization.- and Learning Supervised of Theory Physics Statistical 8 Set.- Data Same the on Learning and Generalization 7.5 Complexity.- Stochastic and Length Description Minimal 7.4.2 (AIC).- Criterion Theoretic Information Akaike's 7.4.1 Selection.- Model Include to MLE of Extensions 7.4 Estimation.- Posteriori A Maximum 7.3 Measure.- Information the and Likelihood Maximum 7.2.1 Estimators.- Likelihood Maximum 7.2 Estimators.- Unbiased for Inequality Cramer-Rao 7.1.1 Definitions.- Basic - Estimation Parameter Statistical 7.1 Estimation.- Statistical and Learning Supervised 7 Learning.- Supervised II: Model.- Retina 6.4.2 Background.- Theoretical 6.4.1 Vision.- Early of Theory Example: 6.4 Detection.- Novelty and Estimation Density 6.3.3 Map.- Symplectic Parameterized a Optimizing 6.3.2 Maps.- Nonlinear Preserving Entropy General 6.3.1 Architectures.- Symplectic General by Reduction Redundancy 6.3 Modeling.- System Dynamical 6.2.1 Series.- Time Chaotic of Modeling Unsupervised 6.2 Results.- and Simulations 6.1.2 Functions.- Activation Order Higher and Sigmoidal Linear, with Networks 6.1.1 Architectures.- Conserving Volume Triangular by Reduction Redundancy 6.1 Networks.- Neural Deterministic Extraction: Feature Nonlinear 6 Appendix.- 5.3 Retina.- a from Formation Fields Receptive 5.2.4 Experiments.- Learning Factorial 5.2.3 Rule.- Learning the of Complexity Numerical 5.2.2 Model.- Learning 5.2.1 Machine.- Boltzmann the for Infomax and Minimization Redundancy 5.2 Machine.- Boltzmann in Principle Infomax of Examples 5.1.2 Model.- Learning 5.1.1 Machines.- Boltzmann for Principle Infomax 5.1 Networks.- Stochastic Boolean Extraction: Feature Nonlinear 5 Case.- Non-Gaussian the in Algorithms ICA Linear of Results Experimental 4.6.4 Case.- Non-Gaussian the in Factorization Output for Algorithms 4.6.3 4.6.2.- Theorem and Criteria Expansion Edgeworth The 4.6.2 Transformation.- Linear a of Output the at Cumulants of Properties Some 4.6.1 Distribution.- Input Arbitrary in ICA Linear 4.6 Reduction.- Dimension Output the and ICA Gaussian Linear 4.5.2 Case.- Input Gaussian in ICA and PCA Between Relationship 4.5.1 PCA.- Matrices: Rotation with ICA Gaussian in Learning 4.5 Networks.- Anti-Symmetric and Symmetric with Learning of Examples 4.4.3 Connections.- Lateral Symmetric With Networks 4.4.2 Connections.- Lateral Anti-Symmetric With Networks 4.4.1 ICA.- Linear and Distribution Input Gaussian 4.4 ICA.- Linear 4.3 ICA.- for Criterion as Information Mutual 4.2.2 ICA.- for Criterion Based Expansion Cumulant 4.2.1 ICA.- for Criteria General 4.2 ICA-Definition.- 4.1 Case.- Linear and Formulation General Analysis: Component Independent 4 Approximation.- Stochastic General the of Function Lyapunov a as Capacity Information 3.2.3 Loss.- Information of Bound Upper 3.2.2 Principle.- Infomax and Principle Loss Information of Minimization 3.2.1 Infomax.- Approach: Theoretic Information 3.2 PCA.- and Algorithms Network Neural 3.1.3 Reconstruction.- Optimal and PCA 3.1.2 Matrix.- Covariance the of Diagonalization and PCA 3.1.1 Approach.- Statistical Analysis: Component Principal 3.1 Principle.- Infomax Extraction: Feature Linear 3 Learning.- Unsupervised I: Rules.- Learning Biological 2.2.7 Learning.- Competitive Unsupervised 2.2.6 Machine.- Boltzmann Networks: Recurrent Stochastic 2.2.5 Backpropagation.- Networks: Feedforward 2.2.4 Paradigms.- Learning 2.2.3 Architectures.- Neural 2.2.2 Modeling.- Network Neural 2.2.1 Networks.- Neural of Theory the of Elements 2.2 Theory.- Coding 2.1.8 Inequalities.- Theory Information Fundamental 2.1.7 Rules.- Chain 2.1.6 Information.- Mutual and Entropy Relative Entropy, Differential 2.1.5 Information.- Mutual 2.1.4 Entropy.- Kullback-Leibler 2.1.3 Entropy.- Conditional and Entropy Joint 2.1.2 Information.- and Entropy 2.1.1 Theory.- Information of Elements 2.1 Networks.- Neural and Theory Information of Preliminaries 2 Introduction.- 1 Online Zahlungsverkehr discount Die gewählten Kanäle sollten jedoch weitgehend ineinander greifen können Generell versteht man darunter Worte Phrasen das bestehende System individuell zu erweitern. Je nach Software, die Sie nutzen

Verwirrt? Link zum original Text


EAN: 9780387946665
Marke: Springer Berlin
weitere Infos: MPN: 6402711
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 143.00 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage