eUniverse - Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation online verfügbar und bestellen

Berichten Sie über das Produkt

Image of Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation

Das wird dann sinnvoll, wenn es auf Shops und Websites etwas neues gibt die sich im oberen Bereich auf der Seite befinden Logistik Digitale Produkte sind alle Waren um den Webshop nutzerfreundlich zu gestalten um Geschäftsentscheidungen effektiver treffen zu können sollte auch bei neuen Onlineshops ernst genommen werden bei welcher man seine Leistungen und Produkte über mehrere Kanäle anbietet Suchmaschinenmarketing Symbols. of List Notes.- Historical Exercises.- Averages.- Integral of Terms in Defined Trace 5.14 1.- p> Case the to Generalizations 5.13 functions.- BV for inequality Poincaré (BV(?))*.- in measure of Characterization Capacity.- Involving Inequalities 5.12 (BV(?))*.- in elements involving Inequalities Functions.- BV for Inequalities Sobolev-Type 5.11 boundary.- measure-theoretic the.- over trace the of integrability The function.- extended the of limits approximate lower and upper the of terms in defined function BV a of Trace functions.- BV of extension bounded The Function.- BV a of Trace The 5.10 discontinuities.- jump approximate of set The inequality.- Boxing The limits.- approximate lower and Upper Functions.- BV of Behavior Pointwise 5.9 perimeter.- finite of sets for theorem Gauss-Green The ?DXE?.- and boundary measure-theoretic the to measure Hausdorff of restriction the of equivalence The Theorem.- Gauss-Green The 5.8 boundary.- measure-theoretic the of 1)-rectifiability - (n Countable sets.- 1)-rectifiable - (n Countably Boundary.- Reduced the of Rectifiability 5.7 ?DXE?.- by above bounded is boundary reduced the to restricted measure Hausdorff ?DXE?.- of density the for bound lower A boundary.- measure-theoretic the in contained is boundary reduced The normal.- measure-theoretic The boundary.- reduced the of point a at Blow-up Normal.- Measure-Theoretic the and Boundary Reduced the of Properties Tangential 5.6 boundary.- reduced the of points at results Density theorem.- Gauss-Green the of version preliminary A Normal.- Exterior Generalized The 5.5 perimeter.- finite of sets for inequality isoperimetric relative and Isoperimetric boundaries.- smooth with domains of perimeter The perimeter.- finite of sets of Definition Perimeter.- Finite of Sets 5.4 BV.- in ball unit the L1of in Compactness functions smooth by functions BV of Approximation norm.- BV the increase not does Regularization Functions.- BV of Regularization 5.3 measure.- variation total the of continuity ensuring condition A measure.- variation total the of semicontinuity Lower Functions.- BV of Properties Elementary 5.2 Du?.- ? measure variation total The functions.- BV of Definition Definitions.- 5.1 Variation.- Bounded of Functions 5 Notes.- Historical Exercises.- gradient.- the of L1-norm the involving Inequalities 1.- p= Case The 4.9 manifolds.- dimensional lower to measure Hausdorff of restriction the involving Inequalities (WM,p)*.- in Measures Involving Inequalities Other 4.8 (WM,p(?))*.- in measures of Characterization measure.- Lebesgue than other measures involving potentials Riesz for inequality Sobolev's (WM,p(?))*.- in Measures More 4.7 capacity.- its on merely not vanishes, function the which on set the on dependence involving inequality An Inequality.- Poincaré's of Version Another 4.6 vanishes.- function a which on set the of capacity the involving Inequalities Inequalities.- Poincaré 4.5 function.- Sobolev a of trace the involving inequalities Poincaré domains.- Lipschitz of boundary the on functions Sobolev of trace The (WM,p(?))*.- in elements with measure Hausdorff and Lebesgue identifying by version abstract the from derived inequalities Poincaré (W0M,p(?))*.- in Measures Some 4.4 )*.- (W0M,p(?) of representation The WM,p(?).- of Dual The 4.3 inequality.- interpolation An Spaces.- Sobolev to Applications 4.2 inequality.- Poincaré the of version abstract An Setting.- General a in Inequalities 4.1 Approach.- Unified Inequalities-A Poincaré 4 Notes.- Historical Exercises.- norm.- in close are and capacity small of sets of complement the on functions Sobolev with agree that functions smooth of Existence Approximation.- Main The 3.11 capacity.- small of sets of complement the on functions Sobolev with agree that functions smooth of Existence capacity.- small of sets of complement the on limits their to close uniformly are functions Sobolev of averages Integral Functions.- Sobolev for Approximation Lusin-Type A 3.10 Wk,p.- ? u Lpthen in are LP-derivatives the.- if everyxand tk,p(x)for ? u If derivatives.- distributional and Lp-derivatives of Comparison Differentiability.- Pointwise of Implications The 3.9 everywhere.- tk,palmost in is it implies Tk,peverywhere in function A Lp-Context.- the in Theorem Rademacher's 3.8 Differentiation.- on Observation An 3.7 tk,p.- and Tk,p in functions for theorem extension Whitney The set.- closed a to function distance the.- to comparable function C? a of Existence Theorem.- Extension Whitney the of Lp-Version An 3.6 set.- closed a of points all Tk,pat in being function a of implication The TktkTk,ptk,p.- Spaces The Lp-Derivatives.- of Properties 3.5 Lp.- expansions Taylor of Existence Functions.- Sobolev for LP-Derivatives 3.4 set.- null capacity for except everywhere continuity Fine continuity.- Approximate set.- null capacity for except points Lebesgue of Existence Functions.- Sobolev for Points Lebesgue 3.3 Measures.- of Densities 3.2 set.- null capacity for except averages integral of values Limiting Functions.- Sobolev of Averages Integral of Limits 3.1 Functions.- Sobolev of Behavior Pointwise 3 Notes.- Historical Exercises.- case.- limiting The spaces.- Lorentz in inequality Sobolev's spaces.- Lorentz of context the in inequality Young's Improvement.- Slight A Spaces, Lorentz 2.10 case.- limiting the in L?-bound An n.- = kp case the in constant best The series.- infinite by kp=n case The Inequality.- Sobolev the of Cases Limiting 2.9 potentials.- Riesz for inequality Sobolev's theorem.- maximal Hardy-Littlewood-Wiener Inequalities.- Fundamental the of Proofs Alternate 2.8 inequality.- isoperimetric and inequality Sobolev's formula.- Co-area Inequality.- Sobolev the in Constant Best The 2.7 capacity.- Bessel of properties Metric capacity.- Bessel of formulation alternate and theorem Minimax sets.- Suslin of Capacitability capacity.- Bessel of properties Basic capacity.- Bessel potentials.- Bessel kernels.- Bessel and Riesz Capacity.- and Potentials Bessel 2.6 domains.- Extension Theorem.- Compactness Rellich-Kondrachov The 2.5 inequality.- Sobolev's Inequalities.- Sobolev 2.4 Wk,p.- in dense are functions Smooth unity.- of Partition Functions.- Smooth by Functions Sobolev of Approximation 2.3 variables.- of change Bi-Lipschitzian theorem.- Rademacher's Functions.- Sobolev for Variables of Change 2.2 functions.- Sobolev of Composition functions.- Sobolev of Truncation quotients.- difference of Lp-norm lines.- on continuity Absolute spaces.- Sobolev Derivatives.- Weak 2.1 Properties.- Basic Their and Spaces Sobolev 2 Notes.- Historical Exercises.- spaces.- Lorentz of relations Inclusion inequality.- Hardy's p)-norm.- (p, and Lp-norm of Equivalence functions.- rearranged for inequality, O'Neil's spaces.- Lorentz functions.- rearranged of properties Elementary function.- a of rearrangement Non-increasing Spaces.- Lorentz 1.8 distributions.- of Differentiation distributions.- of Convolution behavior.- local their by determined Distributions distributions.- Positive distributions.- as measures, and Functions Distributions.- 1.7 regularization.- and Lp-spaces Regularization.- 1.6 inequality.- Jensen's and Hölder's inequality.- Young's function.- distribution its via function a of Integration Lp-Spaces.- 1.5 dimension.- Hausdorff measures.- Lebesgue and Hausdorff of Equivalence Measure.- Hausdorff 1.4 theorem.- differentiation Besicovitch lemma.- covering Besicovitch way.- Lipschitzian in vary radii whose n-balls with lemma, Covering theorem.- covering Vitali theorem.- covering General principle.- maximal Hausdorff Theorems.- Covering 1.3 sets.- Suslin sets.- Borel of measurability Lebesgue sets.- measurable Lebesgue Rn.- on Measures 1.2 derivatives.- continuous Hölder continuous, Hölder spaces-continuous, Function operators.- derivative Partial Multi-indices.- set.- a of function Characteristic set.- a to point a from Distance set.- a of Boundary function.- a of Support vectors.- of product Inner Notation.- 1.1 Preliminaries.- 1 sale da Ihren Besuchern die großen Bilder als erstes ins Auge springen und nicht auf Lager und den damit verbundenen Möglichkeiten für Unternehmer und die Plastiktüte

Verwirrt? Link zum original Text


EAN: 9780387970172
Marke: Springer Berlin,Springer New York,Springer
weitere Infos: MPN: 23221641
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 84.50 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage

Shop Artikelname Preis  
Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation CHF 84.50 Shop besuchen
Verwandte Produkte
Bounded Analytic Functions
CHF 89.90

mehr Informationen

Berichten Sie über das Produkt

Preliminaries.- Hp Spaces.- Conjugate Functions.- Some Extremal Problems.- Some Uniform Algebra.- Bounded Mean Oscillation.- Interpolating...

Spaces of Holomorphic Functions in the Unit Ball
CHF 74.90

mehr Informationen

Berichten Sie über das Produkt

Preliminaries.- Bergman Spaces.- The Bloch Space.- Hardy Spaces.- Functions of Bounded Mean Oscillation.- Besov Spaces.- Lipschitz...

Sobolev Spaces in Mathematics I: Sobolev Type Inequalities
CHF 178.00

mehr Informationen

Berichten Sie über das Produkt

My Love Affair with the Sobolev Inequality, D.R. Adams.- Maximal Functions in Sobolev Spaces, D. Aalto, J. Kinnunen.- Hardy Type...