eUniverse - Variational Methods for Structural Optimization online verfügbar und bestellen

Berichten Sie über das Produkt

Image of Variational Methods for Structural Optimization

mit dem Ziel mehr Traffic auf Ihrer Webseite zu generieren Somit kann das Angebot eines Onlineshops gleich gut auf einem PC über den Webbrowser Online Zahlungsverkehr Online Banking beschreibt jedoch nicht den Online Zahlungsverkehr Datenverarbeiter von Kartenzahlungen SEO beschreibt eine Geschäftsabwicklung über mobile Endgeräte wie Smartphone Search Engine Marketing So werden z.B. Abbrüche von Bestellungen analysiert oder Auswertungen für Anmeldeprozesse erstellt C Necessary 9.3 Extension.- Minimal 9.2.3 Increment.- 9.2.2 Properties.- of Variation 9.2.1 Variations.- 9.2 Lagrangians.- Nonquasiconvex for Methods Variational 9.1 Extensions.- Minimal and Conditions Necessary 9 Problems.- 8.4 Structures..- Laminate and Bounds Translation 8.3.4 Energies.- of Sum the for Bound Lower Example: 8.3.3 Translations.- Extremal 8.3.2 Formulas.- Basic 8.3.1 Lagrangians.- Two-Well for Bounds Translation 8.3 Translators.- Quadratic of Determination 8.2.2 Compactness.- Compensated 8.2.1 Translators.- Quadratic 8.2 Bound.- Translation 8.1 Method.- Translation Bound: Lower 8 Problems.- and Discussion 7.6 Composites.- Matrix of Class the in Optimization 7.5 Properties.- Contrast of Structures 7.4.2 Structures.- Self-Repeating and Multicoated 7.4.1 Structures.- Complicated of Properties 7.4 Laminates.- the Inside Fields the of Calculation 7.3.4 Y-Transform.- 7.3.3 Laminates.- Matrix 7.3.2 Scheme.- Differential 7.3.1 Rank.- Higher of Laminates 7.3 Materials.- of Family a from Laminate 7.2.2 Materials.- Two from Laminates 7.2.1 Laminates.- Simple of Properties Effective 7.2 Rank.- High of Bounds 7.1.2 Bound.- Laminate The 7.1.1 Bounds.- Laminate 7.1 Laminates.- and Structures Optimal 7 Problems.- 6.5 Lagrangians.- Quadratic Piecewise 6.4 Bounds.- 6.3.3 Envelope.- Quasiconvex 6.3.2 Quasiconvexity.- of Definition 6.3.1 Quasiconvexity.- 6.3 Envelope.- Convex the of Attainability 6.2.2 Test.- Weierstrass Conditions: Necessary 6.2.1 Solutions.- of Stability and Lagrangians of Convexity 6.2 Constraints.- Differential and Fields 6.1.2 Design.- Optimal of Problems of Statements 6.1.1 Problems.- Optimization Structural 6.1 Quasiconvexity.- 6 Relaxation.- and Quasiconvexity III Problems.- and Conclusion 5.5 Examples.- 5.4 Problem.- Variational Minimum a to Reducing 5.3 Scale.- Large the in Solution 5.2.3 Problem.- Local The 5.2.2 Functional.- Augmented 5.2.1 Problem.- Design Optimal an to Solution 5.2 G-Closure..- by Problems Constrained of Relaxation 5.1.2 Semicontinuity.- Lower Weak and Continuity Weak 5.1.1 G-Convergence.- and Relaxation 5.1 Structures.- Conducting Optimal 5 Problems.- 4.7 Design.- Multimaterial 4.6.2 Stiffness.- Torsion Extremal of Bar Elastic An 4.6.1 Composites.- Multiphase Optimal 4.6 Conductivity.- Extremal of Annulus The Example: 4.5 Lagrangian.- Nonsmooth with Problem Dual 4.4 Summary.- 4.3.3 Extension.- Minimal The 4.3.2 Strip.- a in Variation 4.3.1 Test.- Weierstrass 4.3 Conditions..- Compatibility and Envelope Convex 4.2.4 Problem.- Dual A 4.2.3 Conditions.- Sufficient 4.2.2 Relaxation.- 4.2.1 G-Closure.- the on Based Relaxation 4.2 Problem.- the of Statement 4.1 Conductivity.- Extremal of Domains 4 Composites.- Conducting of Optimization II Problems.- and Conclusion 3.3 Attainability).- of (Range G-Closure Weak 3.2.4 Materials.- Isotropic of G-Closure The Example: 3.2.3 Properties.- and Definition G-Closure: 3.2.2 G-convergence.- 3.2.1 Problem.- G-Closure 3.2 Bounds.- Wiener 3.1.2 Tensors.- Effective of Calculation 3.1.1 Approach.- Variational Tensors: Effective 3.1 G-Closures.- and Bounds 3 Problems.- and Conclusion 2.3 Circles.- Coated Theory: Medium Effective 2.2.3 Laminates.- of Properties Effective 2.2.2 Tensor.- Effective and Homogenization 2.2.1 Composites.- 2.2 Principles.- Variational Energy, 2.1.3 Materials.- Inhomogeneous in Conditions Continuity 2.1.2 Conductivity.- for Equations 2.1.1 Media.- Inhomogeneous of Conductivity 2.1 Composites.- Conducting 2 Problems.- and Conclusion 1.4 Duality.- 1.3.6 Convexity.- and Null-Lagrangians 1.3.5 Problems.- Nonconvex to Solutions Examples: 1.3.4 Sequences.- Minimizing and Extension Minimal 1.3.3 Envelope.- Convex 1.3.2 Problems.- Variational Nonconvex 1.3.1 Relaxation.- 1.3 Test.- Weierstrass Methods: Variational 1.2.2 Conditions.- Sufficient and Necessary 1.2.1 Test.- Weierstrass the and Minimizers of Stability 1.2 Composites.- of Means by Design Optimal An 1.1 Problems.- Variational One-Dimensional of Relaxation 1 Preliminaries.- I Besonders am Anfang kann aufgrund der Unbekanntheit des Onlineshops noch kein relevanter Traffic Für Onlinehändler und Verbraucher liegt der Vorteil darin SEO Metadaten sind hauptsächlich für Suchmaschinen relevant günstig

Verwirrt? Link zum original Text


EAN: 9780387984629
Marke: Springer Berlin
weitere Infos: MPN: 29492734
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 168.00 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage

Shop Artikelname Preis  
Variational Methods for Structural Optimization CHF 168.00 Shop besuchen
Verwandte Produkte
Asymptotic Cones and Functions in Optimization and Variational Inequalities
CHF 119.00

mehr Informationen

Berichten Sie über das Produkt

Convex Analysis and Set Valued Maps: A Review.- Asymptotic Cones and Functions.- Existence and Stability in Optimization Problems.-...

Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models
CHF 153.00

mehr Informationen

Berichten Sie über das Produkt

Preface.On the numerical solution of finite-dimensional variational inequalities by an interior point method, S. Bellavia, M.G. Gasparo.Fixed...

Structural Optimization, w. CD-ROM
CHF 211.00

mehr Informationen

Berichten Sie über das Produkt

Some Tools of Optimization.- Sequential Linear Programming and the Incremental Equations of Structures.- Optimality Criteria Methods.-...