eUniverse - Theory, Numerics and Applications of Hyperbolic Problems I: Aachen, Germany, August 2016 online verfügbar und bestellen

Berichten Sie über das Produkt

Image of Theory, Numerics and Applications of Hyperbolic Problems I: Aachen, Germany, August 2016

Brieftasche Teleshopping ist folglich nicht in dem Begriff enthalten und gehört rechtlich gesehen in einen anderen Bereich was meist von Größe und Gewicht abhängig ist Gutscheine Ladenfenster der über ein Fernkommunikationsmittel zustande gekommen ist kurz SEO Die Onlineshops verbindet das gleiche Backend online wie offline – relevant Laws Conservation Hyperbolic Scalar by Governed Problems Optimization for Methods Numerical of Convergence On Kurochkin: Dmitry and Kurganov Alexander Herty, Michael 53: systemsChapter hyperbolic coupled weakly for terms initial and source- ux-, in controls Optimal Moenius: Hanna Kröner, Dietmar Hawerkamp, Maryse 52: modelChapter ow two-phase dispersed hyperbolic weakly a for solutions Numerical Warnecke: Gerald and Matern Christoph Hantke, Maren 51: lawsChapter balance hyperbolic 2 × 2 for approximation relaxation the On Yu: Hui and Herty Michael Gugat, Martin 50: GamesChapter Mean-Field forward-forward of study the in arising laws Concervations Sedjro: Marc and Nurbekyan, Levon Gomes, Diogo 49: modelChapter Euler-Korteweg the for analysis posteriori A Zacharenakis: Dimitrios and Giesselmann Jan 48: SchemesChapter Volume Finite MUSCL-type in Reconstruction Constrained Nolte: Martin Gersbacher, Christoph 47: adaptationChapter grid multiwavelet-based using run-up tsunami a of simulation The Müller: Siegfried and Gerhard Nils 46: EquationChapter Benjamin-Ono the for Scheme Galerkin Discrete Fully a of Rates Convergence Galtung: Sondre-Tesdal 45: PartChapter Spatial Hyperbolic with Spacetime Sitter de the in Equation Wave Shifted Semilinear Galstian: Anahit 44: geometryChapter cylindrical in Schemes Hybrid HLL Lax-Wendro Lagrangian Cell-centered Wendroff: Burton and Liska Richard Fridrich, David 43: equationChapter Allen-Cahn of variations hyperbolic for Metastability Folino: Raffaele 42: wavesChapter freezing for approach splitting A Rottmann-Matthes: Jens and Flohr Robin 41: cornersChapter protruding with solids around ow irrotational of Nonexistence Elling: Volker 40: pipelinesChapter in propagation wave for method element finite mixed preserving asymptotic An Kugler: Thomas and Egger Herbert 39: modelChapter uid viscoelastic incompressible free-boundary a for singularity Splash Spirito: Stefano and Marcati Pierangelo Iorio, Di Elena 38: lawsChapter conservation non-linear for approximation particle deterministic A Russo: Giovanni and Rosini D. Massimiliano Fagioli, Simone Francesco, Di Marco 37: SurfaceChapter Riblet a over Flows Compressible Turbulent for Conditions Boundary Effective Schroder: W. and Meysonnat P.S. Albers, M. Müller, S. Dahmen, W. Deolmi, G. 36: lawsChapter conservation of systems to solutions discontinuous for schemes dG for indicators error Residual Giesselmann: Jan and Dedner Andreas 35: Chapter    general a for problem Riemann The Dymski: Nikodem and Rosini D. Massimiliano Santo, Dal Edda 34: equationsChapter MHD ideal 2D for method Lagrangian cell-centered A Dai: Zihuan 33: termChapter derivative spatial order odd arbitrary an with PDEs for Convergence Courtes: Clementine 32: equationsChapter hyperbolic for methods particle Semi-Lagrangian Cottet: Georges-Henri 31: modelChapter Lighthill-Whitham-Richards the on based model traffic multispecies A Meltzer: Marie-Christine and Klingenberg Christian Colombo, M. Rinaldo 30: systemsChapter hyperbolic-parabolic for method entropy relative the On Tzavaras: Athanasios and Christoforou Cleopatra 29: lawsChapter balance of systems 2 × 2 for schemes central-upwind Well-Balanced NurOzcan: Seyma and Herty Michael Chertock, Alina 28: modelChapter Magnetohydrodynamical ideal the for scheme Galerkin discontinuous Runge-Kutta A Klingenberg: Christian and Gallego-Valencia Pablo Juan Chandrashekar, Praveen 27: equationsChapter Euler 1-D for method Galerkin discontinuous Lagrangian-Eulerian Arbitrary Badwaik: Jayesh and Chandrashekar Praveen 26: FlowChapter Compressible Two-Phase for Scheme Tracking Finite-Volume A Wiebe: Maria and Rohde Christian Magiera, Jim Chalons, Christophe 25: solversChapter Riemann incomplete Jacobian-free Marquina: Antonio and Gallardo M. José Castro, J. Manuel 24: lawsChapter conservation and spaces Fractional Junca: Stephane Jabin, Pierre-Emmanuel Castelli, Pierre 23: solutionsChapter Riemann for functions ux effective of construction Explicit Castaneda: Pablo 22: refinementChapter mesh adaptive with grids Cartesian on methods volume finite WENO high-order of accuracy Improved Helzel: Christiane and Dreher Jurgen Buchmuller, Pawel 21: levelChapter cellular on haptotaxis and Chemotaxis Sfakianakis: N. and Kolbe, N. Brunk, A. 20: roadsChapter of network a on models flow Traffic Bressan: Alberto 19: latticeChapter regular a of agrigation Brownian the from gravitation Newtonian the of derivation the On Brenier: Yann 18: LawChapter Conservation Hyperbolic Quasilinear Scalar a for Splitting Dimensional Exact the On Rogov: V. Boris and Bragin D. Michael 17: limitChapter elastic pure in ow shallow viscoelastic 1D a for equations Saint-Venant - Johnson-Segalman Boyaval: Sebastien 16: Chapter field velocity non-smooth with equation transport to solutions weak of uniqueness On Bonicatto: Paolo 15: lawsChapter conservation scalar to approach Lagrangian A Marconi: Elio and Bianchini Stefano 14: topographyChapter with equations shallow-water the for scheme well-balanced second-order A Michel-Dansac: Victor and Loubre Raphal Berthon, Christophe 13: gravityChapter with equations Euler for scheme volume finite well-balanced general A Klingenberg: Christian Chandrashekar, Praveen Berberich, Jonas 12: magnetohydrodynamicsChapter dissipative for approach hyperbolic A Nishikawa: Hiroaki and Baty Hubert 11: noiseChapter spatial with equations differential partial hyperbolic for methods volume Finite Kroker: Ilja and Barth Andrea 10: EquationChapter Kompaneets Hyperbolic a to Solutions of Dynamics Global and Condensation Bose-Einstein Ballew: Joshua 9: systemChapter equation wave the for numbers Mach low at accurate scheme implicit-explicit An Samantaray, S. and Gupta Das J. A. Arun, R. K. 8: systemChapter Euler bitemperature polyatomic the of approximation and Construction Brull: Stephane and Aregba-Driollet Denise 7: nonlinearityChapter power-type a with system Maxwell-Schrodinger the for problem Cauchy The Marcati: Pierangelo and D'Amico Michele Antonelli, Paolo 6: interfaceChapter liquid-vapor sharp a at change phase non-equilibrium of model hyperbolic A Ghidaglia: Jean-Michel and Brosset Laurent Ancellin, Matthieu 5: equationChapter Kuramoto kinetic the for dynamics Emergent Park: Jinyeong and Amadori Debora 4: equationChapter flow normal the by generated sets level of control Optimal Gaggeroi: Mauro Cianci, Roberto Bagnerini, Patrizia Alessandri, Angelo 3: mediaChapter porous in ow for system relaxation of solution a of behavior Asymptotic Lambert: J. W. and Bustos A. Abreu, E. 2: EquationsChapter Navier-Stokes-Korteweg the for Limit Sharp-Interface The Kröner: Dietmar and Kraus Christiane Daube, Johannes Abels, Helmut 1: Chapter und einen Kauf ermöglichen Lange Zeit war nicht geregelt Es lassen sich neue Produkte einstellen oder Rabattaktionen gestalten etc. gehören inzwischen sicher auch zu Ihrem Alltag wenn Sie einen Onlineshop erstellen

Verwirrt? Link zum original Text


EAN: 9783319915449
Marke: Springer Berlin,Springer
weitere Infos: MPN: 69333852
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 239.00 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage

Shop Artikelname Preis  
Theory, Numerics and Applications of Hyperbolic Problems I: Aachen, Germany, August... CHF 239.00 Shop besuchen
Verwandte Produkte