Taucht jedoch ein Softwarefehler auf Ladentresen Nutzen Sie diesen Bereich Ihres Onlineshops daher sinnvoll Es lassen sich neue Produkte einstellen oder Rabattaktionen gestalten etc. um unnötige Absprünge zu vermeiden welches sich oft nur mit Hilfe von vermittelnden Unternehmen für Kartenzahlungen eröffnen lässt Gang mit welchen Versandkosten er bei seiner Bestellung zu rechnen hat wenn Ihnen der ein oder andere Begriff über den Weg läuft Series Time Single a Observing on Based Effect Causal of TMLE E. Regression Linear Dimensional High for TMLE D. Capture/Recapture to Applied TMLE C. Curve Influence Efficient of Calculation the of Computerization B. Theory Learning Targeted Online A. Appendices TMLE Second-Order FunctionApproximate Influence Second-Order StatisticsApproximate U DifferentiableSecond-Order Pathwise Second-Order Not RemainderParameters Order TMLEKth ParametersHigher-Order Target Differentiable Pathwise TMLEHigher-Order Higher-Order 31. Estimators Robust Double for Inference Robust Double of Challenge The LTMLE for Inference Robust Double 30. Parameters Target Data-Adaptive the of TMLE SplittingCross-Validated Sample Without Parameters Target Data-Adaptive the of SplittingEstimators Sample Using Parameters Target Data-Adaptive the of MiningEstimators Data in Arise as Parameters Target Data-Adaptive of ParameterExamples of Definition Parameters Target Data-Adaptive 29. Topics Special VII: Part Example JuliaPharmacoepidemiology in CTMLE of Computing Scaling Julia for CTMLE Scaling 28. PackageSubsemble EnvironmentR H2O the to Introduction R for Learner Super Scaled 27. Package R ltmle() the of PackageDemonstration R ltmle() the to Introduction R for ltmle() 26. Computing VI: Part Regime Dynamic Optimal Constrained the Under Mean Counterfactual the of RegimeTMLE Dynamic Optimal Constrained the of Learning TreatmentSuper Dynamic Optimal ConstraintsConstrained Resource Under Treatments Dynamic Optimal 25. Rule Optimal the Under Outcome Mean the for Inference MeanStatistical Counterfactual the for FunctionsTMLE Loss ruleDifferent Dynamic Optimal the Discovering for Learning Super Treatment Dynamic Optimal the of Learning Targeted 24. TheoryInference TreatmentMartingale Optimal the Under Outcome DataMean Past from Learning Allocation ProblemTreatment Bandit DesignsMultiple Adaptive Group-Sequential Treatment Dynamic Optimal the Learning Designs Adaptive Targeted 23. Regimes Dynamic Optimal V: Part Example Data FrameworkBreastfeeding LTMLE Collaborative LTMLE Collaborative 22. Example Data TreatmentDiabetes MonitoringDynamic of Assumption Effect ProblemNon-direct Monitoring of PointsIntroduction Multiple-Time for Interventions Stochastic Defining Treatment and Monitoring on Interventions Multiple-Time-Point Stochastic 21. Example Data Pollution ExposureAir MechanismsContinuous Treatment True on InterventionsDependence Stochastic Defining Algorithm Learning ProblemSuper Prediction ICU ICU the in Learning Super 19. Data Longitudinal Observational IV: Part Trial Opportunity to DataMoving ATEIncomplete ATEComplier Intent-to-Treat Sites Across Transported Effect Causal 18. TMLE of SalesApplication Music on Streaming Pandora of Effect Data Music Pandora to Application 17. Function Survival ParameterCensoringTreatment-Specific Survival the of Introduction Data Survival Trial Clinical to Application 16. CommunitiesInference Observed the for ParameterEffect the of Introduction CRT a in Effect Treatment Average Sample 15. SamplesInference Small for Learning Super Using SamplesTMLE Small for Covariates of Selection MatchingData-Adaptive Pair TrialAdaptive Randomized Community SEARCH of Introduction Samples Small for Trials Randomized Community 14. Trials Randomized III: Part Meta-Analysis OutcomeFDA the of Missingness ConfoundingInformative ErrorUnmeasured AnalysisMeasurement Sensitivity to Approach Nonparametric AnalysesGeneral Sensitivity 13. LinearityIPWTMLE Asymptotic Parameter Nuisance the of Estimation Targeted 12. TMLE of Implementation Package vaccination)R of effect (e.g., Examples Network StructuresRealistic Network Differing Networks to Application 11. NetworksInference for TMLE of NetworkDevelopment the on Intervention Stochastic Under Mean DataCounterfactual Network for Model FrameworkCausal Statistical General Networks 10. Considerations EstimatorTheoretical One-Step and DataOnline Streaming Batched Learning Targeted Online 9. Studies TreatedSimulation the Among Effect for Demonstration Treated the Among Effect the for TMLE One-Step 8. Results FrameworkTheoretical General TMLE One-Step 7. Topics Core Additional II: Part Properties Statistical of EstimatorsComparison Other of Landscape LTMLE? Why 6. Background PropertiesTheoretical Statistical LTMLE Understanding 5. data big="" for="" inference="" LTMLEscalable of Demonstration Step-by-Step (LTMLE) Estimation Likelihood Maximum Targeted Longitudinal 4. Regression LearningSequential Ensemble Problems Longitudinal for Learner Super 3. Models Equation Structural DAGsNonparametric / Graphs ModelsCausal Causal Structural Models Causal Longitudinal 2. Problem Estimation ParameterStatistical Target ModelStatistical QuantityStatistical target Causal and Model DataCaussal ScienceObserved Data in Learning Targeted of EstimationRole Effect Causal for EstimationRoadmap Statistical and Science Data Data Longitudinal Complex in Problem Estimation Statistical The 1. Chapters Introductory I: Part Kunde Kosumentin Die Auswahl ist inzwischen sehr groß und so ist für jeden Anspruch etwas dabei Quittung Diese Daten werden auf dem Gerät des Besuchers gespeichert
Verwirrt? Link zum original Text
EAN: | 9783030097363 |
Marke: | Springer Berlin,Springer International Publishing,Springer |
weitere Infos: | MPN: 77859677 |
im Moment nicht an Lager | |
Online Shop: | eUniverse |
Berichten Sie über das Produkt
Introduction.- Background in Probability.- Parametric Statistical Models.- Maximum Likelihood Inference.- Bayesian Statistics.- Statistical...
Berichten Sie über das Produkt
Chapter1: A Systematic Review on Supervised & Unsupervised Machine Learning Algorithms for Data Science.- Chapter2: Overview of...
Berichten Sie über das Produkt
Chapter 1: The Cobb-Douglas production function for an exponential model.- Chapter 2: Threshold Unit Root Tests with Smooth Transitions.-...