Big Data Händlerkonto Darunter fallen Abbuchungen, Überweisungen oder das Einrichten von Daueraufträgen Die Auswahl ist inzwischen sehr groß und so ist für jeden Anspruch etwas dabei Dann wird Ihnen unser Blogbeitrag sicher weiterhelfen günstig Brieftasche Multishops Hierbei handelt es sich um die Auswertung des Bestellvorgangs Symbols. of Index References.- and Answers, Hints, Identity.- Capelli's of Proof F.3: Groups.- Orthogonal and Symplectic to Applications F.2: Invariants.- Polynomial The F.1: Groups.- Classical the for Theory Invariant F. Theorem.- Ado's E.2: Theorem.- Levi's E.1: Theorems.- Levi's and Ado's E. Group.- Weyl the On D.4: Subalgebras.- Cartan of Conjugacy The D.3: Algebras.- Lie Semisimple of Structure the On D.2: Subalgebras.- Cartan of Existence The D.1: Subalgebras.- Cartan D. Derivations.- On C.3: Decomposition.- Jordan the and Reducibility Complete C.2: Criterion.- Caftan's and Form Killing The C.1: Semisimplicity.- On C. Contractions.- and Duals B.3: Powers.- Symmetric and Exterior B.2: Products.- Tensor B.1: Algebra.- Multilinear On B. Identities.- Determinantal Other A.3: Identities.- Determinantal the of Proofs A.2: Them.- among Relations and Polynomials Symmetric Basic A.1: Functions.- Symmetric On A. Appendices.- Representations.- Quaternionic and Complex, Real, 26.3: Formula.- Character Weyl's of Proof Second 26.2: Groups.- and Algebras Lie Simple Real of Classification 26.1: Groups.- Lie and Algebras Lie Real 26. Subgroups.- to Restrictions and Products Tensor 25.3: Formula.- Multiplicity Kostant the (WCF), of Proof 25.2: Formula.- Multiplicity Freudenthal's 25.1: Formulas.- Character More 25. Groups.- and Algebras Lie Classical to Applications 24.2: Formula.- Character Weyl The 24.1: Formula.- Character Weyl 24. Decompositions.- Bruhat 23.4: Spaces.- Homogeneous 23.3: Characters.- and Rings Representation 23.2: Groups.- Simple Complex of Representations 23.1: Characters.- Groups, Lie Complex 23. Algebras.- Lie Exceptional the of Constructions Algebraic 22.4: of$${{\mathfrak{g}}_{2}}$$.- Representations 22.3: Algebra.- Lie a That$${g_2}$$is Verifying 22.2: Diagram.- Dynkin Its of$${g_2}$$from Construction 22.1: Algebras.- Lie Exceptional Other $${g_2}$$and 22. Diagram.- Dynkin Its from Algebra Lie a Recovering 21.3: Diagrams.- Dynkin Classifying 21.2: Algebras.- Lie Semisimple to Associated Diagrams Dynkin 21.1: Algebras.- Lie Simple Complex of Classification The 21. Theory.- Lie IV: Triality.- 20.3:$$Spi{n_8}\mathbb{C}$$and Groups$$Spi{n_m}\mathbb{C}$$and$$Spi{n_m}\mathbb{R}$$.- Spin The 20.2: $$\mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- of Representations Spin and Algebras Clifford 20.1: of$$\mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- Representations Spin 20. Groups.- Orthogonal for Construction Weyl's 19.5: Algebras.- Orthogonal Odd the of Representations 19.4. of$$\mathfrak{s}{\mathfrak{o}_7}\mathbb{C}$$.- Representations 19.3: Algebras.- Orthogonal Even the of Representations 19.2: of$$\mathfrak{s}{\mathfrak{o}_6}\mathbb{C}$$.- Representations 19.1: 19.$$\mathfrak{s}{\mathfrak{o}_6}\mathbb{C},$$$$\mathfrak{s}{\mathfrak{o}_7}\mathbb{C},$$and$$\mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- of$$\mathfrak{s}{\mathfrak{o}_3}\mathbb{C},$$$$\mathfrak{s}{\mathfrak{o}_4}\mathbb{C},$$and$$\mathfrak{s}{\mathfrak{o}_5}\mathbb{C}$$.- Representations 18.2: 18.1:$$S{O_m}\mathbb{C}$$and$$\mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- Algebras.- Lie Orthogonal 18. Groups.- Symplectic for Construction Weyl's 17.3: General.- of$$\mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$in Representations 17.2: of$$\mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$.- Representations 17.1: 17.$$\mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$and$$\mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.- of$$\mathfrak{s}{\mathfrak{p}_4}\mathbb{C}$$.- Representations 16.2: of$$S{p_{2n}}\mathbb{C}$$and$$\mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.- Structure The 16.1: Algebras.- Lie Symplectic 16. of$$G{L_n}\mathbb{C}$$.- Representations 15.5: Geometry.- More Some 15.4: Products.- Tensor and Construction Weyl's 15.3: of$$\mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$and$$\mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.- Representations 15.2: Analyzing$$\mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.- 15.1: 15.$$\mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$and$$\mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.- Form.- Killing the About 14.2: General.- in Algebras Lie Simple Analyzing 14.1: Algebra.- Lie Semisimple Arbitrary an of Representations and Structure the Analyzing Set-up: General The 14. Representations.- Their and Algebras Lie Classical The III: Plethysm.- Geometric More Little A 13.4: Plethysm.- More Little A 13.3: Representations.- Irreducible the of Description 13.2: Examples.- 13.1: Examples.- of Lots Mainly II: of$$\mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$Part Representations 13. I.- of$$\mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$Part Representations 12. Plethysm.- Geometric Little A 11.3: Plethysm.- Little A 11.2: Representations.- Irreducible The 11.1: of$$\mathfrak{s}{\mathfrak{l}_2}\mathbb{C}$$.- Representations 11. 3.- Rank Three, Dimension 10.4: 2.- Rank Three, Dimension 10.3: 1.- Rank Three, Dimension 10.2: Two.- and One Dimensions 10.1: Three.- and Two, One, Dimensions in Algebras Lie 10. Algebras.- Lie Simple 9.4: Algebras.- Lie Semisimple 9.3: Theorem.- Lie's and Theorem Engel's 9.2: Algebras.- Lie of Classification Rough 9.1: Algebras.- Lie of Classification Initial 9. Map.- Exponential The 8.3: Algebras.- Lie of Examples 8.2: Definition.- and Motivation Algebras: Lie 8.1: Groups.- Lie and Algebras Lie 8. Constructions.- Two 7.3: Groups.- Lie of Examples 7.2: Definitions.- Groups: Lie 7.1: Groups.- Lie 7. Algebras.- Lie and Groups Lie II: Proofs.- The 6.2: Characters.- Their and Functors Schur 6.1: Construction.- Weyl's 6. ight)$$.- {{\mathbb{F}_q}} ight)$$and$$S{L_2}\left( {{\mathbb{F}_q}} of$$G{L_2}\left( Representations 5.2: of$${\mathfrak{A}_d}$$.- Representations 5.1: ight)$$.- {{\mathbb{F}_q}} of$${\mathfrak{A}_d}$$and$$G{L_2}\left( Representations 5. Formula.- Frobenius's of Proof 4.3: of$${\mathfrak{S}_d}$$.- Representations Irreducible 4.2: Results.- the of Statements 4.1: Formula.- Character Frobenius's and Diagrams of:$${\mathfrak{S}_d}$$Young Representations 4. of$$\mathbb{C}$$.- Subfields over Representations and Representations Real 3.5: Algebra.- Group The 3.4: Representations.- Induced 3.3: of$${\mathfrak{S}_d}$$.- Representation Standard the of Powers Exterior 3.2: Examples:$${\mathfrak{S}_5}$$and$${\mathfrak{A}_5}$$.- 3.1: Representations.- Real Algebras, Group Representations, Induced Examples, 3. Consequences.- More Formulas, Projection More 2.4: Examples:$${\mathfrak{S}_4}$$and$${\mathfrak{A}_4}$$.- 2.3: Consequences.- Its and Formula Projection First The 2.2: Characters.- 2.1: Characters.- 2. Groups,$${\mathfrak{S}_3}$$.- Abelian Examples: 1.3: Lemma.- Schur's Reducibility, Complete 1.2: Definitions.- 1.1: Groups.- Finite of Representations 1. Groups.- Finite I: Die Sichtbarkeit Ihres Onlineshops wird verbessert Darunter fallen Zahlungen per Kreditkarte, e-Wallets wie PayPal oder Banküberweisungen der fehlerfrei funktioniert. Des Weiteren sind Funktionen des Onlineshops ergonomisch Tiefpreisgarantie Mit Webhosting wird das Bereitstellen von Speicherplatz auf einem Server bezeichnet
Verwirrt? Link zum original Text
EAN: | 9780387975276 |
Marke: | Springer Berlin,Springer |
weitere Infos: | MPN: 76369313 |
im Moment nicht an Lager | |
Online Shop: | eUniverse |
Berichten Sie über das Produkt
Foundation of Quantum Theory.- Group Representation.- Representations of Lie Group and Lie Algebra (Basics).- Representations of...
Berichten Sie über das Produkt
Preface.- List of Figures.- Introduction.- I. Elements of Monoid Theory.- 1. The Structure Theory of Finite Monoids.- 2. R-trivial...
Berichten Sie über das Produkt
Rings, Algebras and Modules.- Modular Representations of Finite Groups.- Abelian and Triangulated Categories.- Morita theory.- Stable...