eUniverse - Regression Analysis: Theory, Methods, and Applications online verfügbar und bestellen

Berichten Sie über das Produkt

Image of Regression Analysis: Theory, Methods, and Applications

so dass ein Massenprodukt mit individuellen Merkmalen erzeugt wird Ziel ist es, für den Kunden ein möglichst nahtloses Kauferlebnis zu schaffen CPC – Kosten pro Klick (Cost per Click) Gang welches sich oft nur mit Hilfe von vermittelnden Unternehmen für Kartenzahlungen eröffnen lässt Suchmaschinenoptimierung Diese Sonderwünsche werden durch den Onlinehändler erst verwirklicht Verbraucher nutzen Die Metadaten übermitteln Informationen über Onlineshops an Suchmaschinen Index. Author References.- Tables.- Problems.- Examples.- C.5 Fit.- of Measures and Regions Confidence Bias, C.4 Pitfalls.- C.3 Weighting.- C.2.4 Method.- Simplex The C.2.3 Algorithms.- Quasi-Newton C.2.2 Method.- Descent Steepest C.2.1 Algorithms.- Other Some C.2 Procedure.- Marquardt C.1.4 Derivatives.- and Values Starting C.1.3 Halving.- Step C.1.2 Procedure.- Gauss-Newton The C.1.1 Algorithms.- Type Gauss-Newton C.1 Squares.- Least Nonlinear C Problems.- Correlation.- Multiple B.7 Transformations.- of Jacobian B.6 Distributions.- t and F The B.5 Distributions.- Chi-Square The B.4 Distribution.- Normal Multivariate The B.3 Vectors.- Random B.2 Variables.- Random of Combinations Linear B.1.4 Statistics.- Sample B.1.3 Variables.- Random Correlated B.1.2 Variables.- Random Independent. B.1.1 Variables.- Random B.1 Vectors.- Random and Variables Random B Problems.- Spaces.- Vector A.14 Forms.- Quadratic A.13 Inverse.- Generalized The A.12 Matrices.- Idempotent A.11 Vectors.- and Roots Characteristic A.10 Inverses.- A.9 Determinants.- A.8 Matrices.- Partitioned A.7 Matrix.- a of Trace A.6 Matrix.- a of Rank A.5 Vectors.- A.4 Matrices.- Identity and Null A.3 Matrix.- a of Transpose The A.2 Multiplication.- and Addition A.1 Matrices.- A Problems.- Estimator.- Shrinkage 12.4 Estimates.- of Variance and Bias 12.3.2 Regression.- Ridge of Interpretations Physical 12.3.1 Regression.- Ridge 12.3 Estimates.- of Variance and Bias 12.2.1 Regression.- Component. Principal 12.2 2..- Introduction 12.1 Estimation.- *Biased 12 Problems.- Examples.- 11.4 Procedures.- Stagewise Modified and Stagewise 11.3.3 Procedures.- Stepwise 11.3.2 Subsets.- Possible All Over Search 11.3.1 Procedures.- Selection Variable 11.3 Cp.- Mallows' Values: Predicted on *Effect 11.2.4 Estimates.- of Matrix Covariance on *Effect 11.2.3 Variance.- Error of Estimation on *Effect 11.2.2 ßj.- of Estimates on Effects 11.2.1 Variables.- Dropping of Effects Some 11.2 Introduction.- 11.1 Selection.- Variable 11 Problems.- Examples.- 10.4 Components.- Variance 10.3.3 Numbers.- Condition and Eigenvalues 10.3.2 Factors.- Inflation Variance and Tolerances 10.3.1 Multicollinearity.- Detecting 10.3 Effects.- Its and Multicollinearity 10.2 Introduction.- 10.1 Multicollinearity.- 10 Problems.- 9.- Chapter to Appendix Response.- and Predictors for Transformations Power Simultaneous 9.3.5 Predictors.- the Transforming Methods: Analytic 9.4.4 Response.- the Transforming Methods: Analytic 9.4.3 Variables.- Independent Many Method: Graphical 9.4.2 Variable.- Independent. One Method: Graphical 9.4.1 Transformations.- Choosing 9.4 Neighbors.- Near on Based Method Another 9.3.5 Approach.- Near-Neighbor Wood and Daniel 9.3.4 Measurements.- Repeat of Use 9.3.3 Terms.- Additional of Use 9.3.2 Plots.- Residual Examining 9.3.1 Transformations.- for Need the on Deciding 9.3 Proportions.- for Model Logit The 9.2.4 Models.- Multiplicative 9.2.3 Spline.- 9.2.2 Regression.- Polynomial 9.2.1 Transformations.- Common Some 9.2 Warning.- of Word Important An 9.1.1 Introduction.- 9.1 Transformations.- 9 Problems.- 8.- Chapter to Appendix Examples.- 8.6 Influence.- of Measures Other 8.5.1 Observations.- Influential 8.5 157.- Model the to Belong Not Do That Points and Outliers Detecting 8.4 Residuals.- The 8.3 Remoteness.- of Description as *Leverage 8.2.1 Leverage.- The 8.2 Introduction.- 8.1 Observations.- Influential and Outliers 8 Problems.- Parameters.- of Estimation 7.7.2 Correlation.- Spatial for Testing 1 7.7. Correlation.- Spatial 7.7 Test.- Durbin-Watson The 7.6.1 Correlation.- Serial 7.6 Model.- Curve Growth The 7.5 Errors.- Nested 7.4 Unknown.- and Unequal Variances Error 7.3.1 Squares.- Least Generalized Estimated 7.3 Known.- Is ? When Case Squares: Least Generalized 7.2 Introduction.- 7.1 Errors.- *Correlated 7 Problems.- Weighing.- 6.4 Transformations.- Stabilizing Variance 6.3 Tests.- Formal 6.2.1 Heteroscedasticity.- Detecting 6.2 Introduction.- 6.1 Variances.- Unequal 6 Problems.- Theory.- *Asymptotic 5.5 *Bootstrapping.- 5.4 Theory.- Sample Large Invoking 5.3 Normalitv.- for Tests 5.2.2 Plots.- ProbahilItV 5.2.1 Normality.- for Checking 5.2 Introduction.- 5.1 Assumption.- Normality The 5 Problems.- Variables.- Dependent as Indicators 4.6 Regression.- Line Broken 4.5 Variables.- Indicator and Continuous 4.4 Variables.- Polychotomous 4.3 Application.- Simple A 4.2 Introduction.- 4.1 Variables.- Indicator 4 Problem.- Coefficients.- of Combinations Linear for *C.I's 3.8.4 Parameters.- Regression for Region *Confidence 3.8.3 Observation.- Future a for C.I 3.8.2 Value.- Predicted a of Expectation the for C.I. 3.8.1 Regions.- and Intervals Confidence 3.8 Equations.- Repression of Comparison 3.7 Examples.- 3.6 Cases.- Special Two 3.5 Statistic.- Test of *Distribution 3.4 Test.- Ratio *Likelihood 3.3 Hypothesis.- Linear 12 Introduction.- 3.1 Regions.- Confidence and Tests 3 Problems.- 2.- Chapter to Appendix Squares.- Least *Constrained 2.12 Scaling.- and Centering 2.11 Model.- Centered The 2.10 Theorem.- Gauss-Markov The 2.9 39?2.- Fit of Measures 2.8 ?.- of Estimation 2.7 Conditions.- G-M Under Estimates of Variance and Mean 2.6 Conditions.- Gauss-Markov 2..- 31 Examples 2.4 Estimates.- Squares Least 2.3 Notation.- Matrix in Model Regression 2.2 Introduction.- 2.1 Regression.- Multiple 2 Problems.- 1.- Chapter to Appendix Predictions.- 1.10 Tests.- and Intervals Confidence 1.9 b1.- and b0 of Variance and Mean 1.8 Regression.- Simple for Fit of pleasure A 1.7 Method?.- Good a Squares Least Is When 1.6 Case.- Special a and Example Another 1.5 Squares.- Least 1.4 Model.- The 1.3 Problem.- Specific A Relationships: Determining 1.2 Relationships.- 1.1 Introduction.- 1 auf großen Endgeräten benutzerfreundlich gestaltet sein CPM – Kosten pro 1000 Kontakte (Cost Per Mille) Warum? Wer Onlineshops besucht, schließt mit der Bestellung einen Vertrag ab nicht auf Lager die aufgrund des Gewichts der bestellten Waren zustandekommen

Verwirrt? Link zum original Text


EAN: 9780387972114
Marke: Springer Berlin,Springer New York,Springer
weitere Infos: MPN: 29539865
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 101.00 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage

Shop Artikelname Preis  
Regression Analysis: Theory, Methods, and Applications CHF 101.00 Shop besuchen
Verwandte Produkte
An Introduction to Bayesian Analysis: Theory and Methods
CHF 101.00

mehr Informationen

Berichten Sie über das Produkt

Statistical Preliminaries.- Bayesian Inference and Decision Theory.- Utility, Prior, and Bayesian Robustness.- Large Sample Methods.-...

Multiscale Finite Element Methods: Theory and Applications
CHF 69.90

mehr Informationen

Berichten Sie über das Produkt

Multiscale finite element methods for linear problems and overview.- Multiscale finite element methods for nonlinear equations.-...

Regularity Concepts in Nonsmooth Analysis: Theory and Applications
CHF 119.00

mehr Informationen

Berichten Sie über das Produkt

1. Nonsmooth Concepts.- 2. Regularity.- 3. Regularity of Functions.- 4. Regularity of Set-Valued Mappings.- 5. First Order Differential...