eUniverse - Probability online verfügbar und bestellen

Berichten Sie über das Produkt

Image of Probability

die Zahlungen Ihrer Kunden zu verarbeiten Front End mCommerce oder Mobile Commerce sale Werbung wird im Internet anders als offline vergütet Sagen Sie uns unten in den Kommentaren Bei Onlineshops ist die sicher bekannteste Variante der Jetzt kaufen Button Der Vertragsabschluss erfolgt online. Die Vertragserfüllung kommt jedoch oft offline zustande kurz SEO Objects. Named B Notation.- A Exercises.- 9.7 martingales.- Reversed 9.6.3 filtrations.- to respect with Martingales 9.6.2 Yo,...,YT.- on Conditioning 9.6.1 Complements.- 9.6 ratios.- Likelihood 9.5.3 laws.- Zero-one 9.5.2 theorem.- Radon-Nikodym The 9.5.1 Theorems.- Convergence of Applications 9.5 martingales.- integrable Uniformly 9.4.4 martingales.- of convergence sure Almost 9.4.3 submartingales.- of convergence sure Almost 9.4.2 convergence.- sure almost and Upcrossings 9.4.1 Theorems.- Convergence Martingale 9.4 theorems.- sampling optional of Applications 9.3.2 martingales.- for theorems sampling Optional 9.3.1 Theorems.- Sampling Optional 9.3 Times.- Stopping 9.2 transformations.- and Compositions 9.1.3 Examples.- 9.1.2 Definitions.- 9.1.1 Fundamentals.- 9.1 Martingales.- 9 Exercises.- 8.8 ?-algebra.- a given expectation Conditional 8.7.2 distributions.- conditional Mixed 8.7.1 Complements.- 8.7 cases.- Special 8.6.2 results.- General 8.6.1 Techniques.- Computational 8.6 variables.- random continuous Absolutely 8.5.3 variables.- random Discrete 8.5.2 Generalities.- 8.5.1 Distributions.- Conditional 8.5 Variables.- Random Integrable and Positive 8.4 expectation.- conditional of Properties 8.3.2 prediction.- MMSE as expectation Conditional 8.3.1 X?L2.- for Expectation Conditional 8.3 probability.- Conditional 8.2.3 Examples.- 8.2.2 Basics.- 8.2.1 Variables.- Random of Set Finite a Given Expectation Conditional 8.2 prediction.- Linear 8.1.6 predictors.- MMSE of Computation 8.1.5 theorem.- decomposition orthogonal The 8.1.4 orthonormality.- and Orthogonality 8.1.3 space.- metric as L2 8.1.2 norm.- and product inner The 8.1.1 L2.- in Prediction 8.1 Expectation.- Conditional and Prediction 8 Exercises.- 7.7 theorem.- Berry-Esseen The 7.6.1 Complements.- 7.6 processes.- Renewal 7.5.5 variables.- random independent of sums Random 7.5.4 functions.- distribution Empirical 7.5.3 estimation.- likelihood Maximum 7.5.2 integration.- Carlo Monte 7.5.1 Theorems.- Limit the of Applications 7.5 versions.- general More 7.4.2 summands.- distributed Normally 7.4.1 Logarithm.- Iterated the of Law The 7.4 condition.- Lindeberg The 7.3.2 condition.- Lyapunov The 7.3.1 Theorem.- Limit Central The 7.3 Numbers.- Large of Law Strong The 7.2 theorem.- series three The 7.1.2 inequality.- Kolmogorov's 7.1.1 Variables.- Random Independent of Series 7.1 Theorems.- Limit Classical 7 Exercises.- 6.7 theorem.- Helly's 6.6.1 Complements.- 6.6 functions.- Generating 6.5.4 functions.- generating Moment 6.5.3 transforms.- Laplace 6.5.2 vectors.- random of functions Characteristic 6.5.1 Transforms.- Other 6.5 theorems.- limit classical to Application 6.4.3 theorem.- continuity Levy The 6.4.2 distribution.- in Convergence 6.4.1 Applications.- and Theorems Continuity 6.4 functions.- characteristic of expansions Taylor 6.3.3 moments.- of existence Establishing 6.3.2 exist.- to known moments of Calculation 6.3.1 Expansions.- Taylor and Moments 6.3 theorems.- inversion Specialized 6.2.3 theorem.- uniqueness The 6.2.2 theorem.- inversion The 6.2.1 Theorems.- Uniqueness and Inversion 6.2 properties.- Elementary 6.1.2 Fundamentals.- 6.1.1 Properties.- Basic and Definition 6.1 Functions.- Characteristic 6 Exercises.- 5.7 variables.- random of Convergence LP 5.6.1 Complements.- 5.6 functions.- continuous of Approximation 5.5.4 theorem.- limit Poisson The 5.5.3 theorems.- limit Central 5.5.2 numbers.- large of Laws 5.5.1 Summands.- Bernoulli for Theorems Limit 5.5 mappings.- Continuous 5.4.3 distribution.- in Convergence 5.4.2 functions.- as vectors random of Convergence 5.4.1 Vectors.- Random of Convergence 5.4 mappings.- Continuous 5.3.2 operations.- Algebraic 5.3.1 Transformations.- under Convergence 5.3 subsequences.- involving Implications 5.2.4 validity.- restricted of Implications 5.2.3 Counterexamples.- 5.2.2 valid.- always Implications 5.2.1 Modes.- the Among Relationships 5.2 criteria.- Alternative 5.1.3 functions.- distribution of Convergence 5.1.2 functions.- as variables random of Convergence 5.1.1 Convergence.- of Modes 5.1 Variables.- Random of Sequences of Convergence 5 Exercises.- 4.7 probabilities.- product for Expectation 4.6.2 measure.- Lebesgue to respect with Integration 4.6.1 Complements.- 4.6 distributions.- normal Multivariate 4.5.5 vectors.- random of Moments 4.5.4 correlation.- and Covariance 4.5.3 deviation.- standard and Variance 4.5.2 variables.- random of Moments 4.5.1 Moments.- 4.5 inequalities.- Key 4.4.2 LPspaces.- 4.4.1 Inequalities.- and Spaces LP 4.4 variables.- random independent of Sums 4.3.6 variables.- random independent of Functions 4.3.5 vectors.- random of Functions 4.3.4 variables.- random of Functions 4.3.3 variables.- random Integrable 4.3.2 variables.- random Positive 4.3.1 Expectations.- of Computation 4.3 functions.- distribution Mixed 4.2.4 functions.- distribution continuous Absolutely 4.2.3 functions.- distribution Discrete 4.2.2 Generalities.- 4.2.1 Functions.- Distribution to respect with Integrals 4.2 variables.- random Complex-valued 4.1.4 variables.- random Integrable 4.1.3 variables.- random Positive 4.1.2 variables.- random Simple 4.1.1 Properties.- Fundamental and Definition 4.1 Expectation.- 4 Exercises.- 3.8 spaces.- probability of Products 3.7.2 ?-algebras.- Independent 3.7.1 Complements.- 3.7 processes.- Poisson 3.6.2 processes.- Bernoulli 3.6.1 Processes.- Poisson and Bernoulli 3.6 Asymptotics.- 3.5.3 numbers.- Occupancy 3.5.2 models.- occupancy Four 3.5.1 Models.- Occupancy 3.5 Events.- Independent 3.4 Sequences.- 3.3.2 families.- Finite 3.3.1 Variables.- Random Independent Constructing 3.3 variables.- random independent of Sums 3.2.2 properties.- Transformation 3.2.1 Variables.- Random Independent of Functions 3.2 Examples.- 3.1.3 independence.- for Criteria 3.1.2 Fundamentals.- 3.1.1 Variables.- Random Independent 3.1 Independence.- 3 Exercises.- 2.8 functions.- measurable Borel 2.7.2 sub-?-algebras.- to respect with Measurability 2.7.1 Complements.- 2.7 variables.- random of Sequences 2.6.3 vectors.- Random 2.6.2 variables.- random Individual 2.6.1 Distributions.- Prescribed with Variables Random 2.6 vectors.- Random 2.5.2 variables.- Random 2.5.1 Theory.- Transformation 2.5 vectors.- Random 2.4.3 variables.- random continuous Absolutely 2.4.2 variables.- random Discrete 2.4.1 Distributions.- and Variables Random Key 2.4 vectors.- Random 2.3.2 variables.- Random 2.3.1 Functions.- Distribution and Distributions 2.3 theorems.- class Monotone 2.2.5 variables.- random positive of Approximation 2.2.4 Transformations.- 2.2.3 operations.- Limiting 2.2.2 operations.- Algebraic 2.2.1 Variables.- Random Combining 2.2 criteria.- Simplified 2.1.6 variable.- random a by generated -algebra The 2.1.5 variables.- random Complex-valued 2.1.4 processes.- Stochastic 2.1.3 vectors.- Random 2.1.2 variables.- Random 2.1.1 Fundamentals.- 2.1 Variables.- Random 2 Exercises.- 1.7 R.- on probabilities of Representation 1.6.5 R.- on probabilities Singular 1.6.4 measure.- Lebesgue 1.6.3 Measures.- 1.6.2 numbers.- real extended The 1.6.1 Complements.- 1.6 Set.- a Given Probability Conditional 1.5 distributions.- Mixed 1.4.4 probabilities.- continuous Absolutely 1.4.3 probabilities.- Discrete 1.4.2 functions.- Distribution 1.4.1 R.- on Probabilities 1.4 Uniqueness.- 1.3.5 events.- null and sure Almost 1.3.4 properties.- advanced More 1.3.3 properties.- Elementary 1.3.2 Probability.- 1.3.1 Spaces.- Probability and Probabilities 1.3 bis.- Events, 1.2.8 theorem.- class monotone The 1.2.7 classes.- Generated 1.2.6 operations.- set under closed sets of Classes 1.2.5 sets.- of sequences on Operations 1.2.4 functions.- Indicator 1.2.3 operations.- set Basic 1.2.2 Events.- 1.2.1 Sets.- of Classes and Events 1.2 spaces.- Sample 1.1.2 experiments.- Random 1.1.1 Spaces.- Sample and Experiments Random 1.1 Probability.- 1 Summary.- Theorems.- Limit positive.- spent Time Maxima.- times.- passage First origin.- the to returns of Numbers origin.- the to returns of Times Walk.- Random the of Functional Tools.- Approaches.- Issues.- Approaches.- and Issues calculations.- First Probability.- variables.- Random Model.- The Walks.- Random Prelude: Die Auswahl ist inzwischen sehr groß und so ist für jeden Anspruch etwas dabei dass er dem Verbraucher einen Onlineshop präsentiert im Idealfall natürlich Ihren Shop Gestaffelte Versandkosten werden für differente Gewichtsklassen sowie für bestimmte Zielgebiete erfasst Dann wird Ihnen unser Blogbeitrag sicher weiterhelfen

Verwirrt? Link zum original Text


EAN: 9780387940717
Marke: Springer Berlin,Springer New York,Springer
weitere Infos: MPN: 89972258
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 111.00 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage

Shop Artikelname Preis  
Probability CHF 111.00 Shop besuchen
Verwandte Produkte
An Intermediate Course in Probability
CHF 89.90

mehr Informationen

Berichten Sie über das Produkt

Multivariate Random Variables.- Conditioning.- Transforms.- Order Statistics.- The Multivariate Normal Distribution.- Convergence.-...

Applied Probability
CHF 94.90

mehr Informationen

Berichten Sie über das Produkt

Basic Notions of Probability Theory.- Calculation of Expectations.- Convexity, Optimization, and Inequalities.- Combinatorics.- Combinatorial...

Discrete Probability
CHF 74.90

mehr Informationen

Berichten Sie über das Produkt

1 Introduction.- 2 Counting.- 2.1 order counts, with replacement.- 2.2 order counts, without replacement.- 2.3 order does not count,...