eUniverse - Mathematical Topics Between Classical and Quantum Mechanics online verfügbar und bestellen

Berichten Sie über das Produkt

Image of Mathematical Topics Between Classical and Quantum Mechanics

um den Webshop nutzerfreundlich zu gestalten abgegeben werden, so dass der Kunde so bald wie möglich die bestellte Ware erhält das im Cache noch nicht gespeichert ist um mit dem Unternehmen in Kontakt zu treten oder sich über dieses und das Produkt zu informieren den der Besucher sieht und nutzen kann Werbung wird im Internet anders als offline vergütet Kreditkarte Einkaufstätigkeit um mit dem Unternehmen in Kontakt zu treten oder sich über dieses und das Produkt zu informieren References. IV.- III.- II.- I.- Notes.- Quantization.- Constrained in Angles Vacuum 3.9 Circle.- a on Theory Yang-Mills Quantum in Induction 3.8 Circle.- a on Theory Yang-Mills Quantum 3.7 Circle.- a on Theory Yang-Mills Classical 3.6 Photons.- of Theory Field Quantum 3.5 Invariance.- Gauge of Origin The 3.4 Group.- Poincaré the of Representations 3.3 Reduction.- Covariant from Orbits 3.2 Group.- Poincaré the of Orbits Coadjoint 3.1 Theory.- Quantum Relativistic in Applications 3 Reduction.- Singular of Quantization 2.10 Systems.- Constrained of Quantization The 2.9 Quantization.- Covariant 2.8 Groupoids.- Gauge for Theorem Imprimitivity The 2.7 Stages.- in Induction 2.6 Reduction.- Marsden-Weinstein Quantum 2.5 Theorem.- Imprimitivity Quantum The 2.4 C*-Module.- Hilbert a of C*-Algebra The 2.3 Induction.- Rieffel 2.2 C*-Modules.- Hilbert 2.1 Induction.- 2 Reduction.- Marsden-Weinstein Singular 1.11 Products.- Semidirect of Orbits Coadjoint 1.10 Groups.- Nilpotent of Orbits Coadjoint 1.9 Stages.- in Reduction 1.8 Theorem.- Imprimitivity Transitive Classical the of Proof 1.7 Reduction.- Kazhdan-Kostant-Sternberg 1.6 Reduction.- Marsden-Weinstein 1.5 Theorem.- Imprimitivity Classical The 1.4 Pairs.- Dual Classical 1.3 Reduction.- Symplectic Special 1.2 Reduction.- and Constraints of Basics 1.1 Reduction.- 1 Induction.- and Reduction IV Groupoid.- Lie a of Groupoid Normal The 3.12 Quantization.- Strict a as C*-Algebra Groupoid The 3.11 Map.- Exponential Generalized A 3.10 Algebroid.- Lie a of Algebra Poisson The 3.9 Algebroids.- Lie 3.8 C*-Algebras.- Groupoid Lie of Examples 3.7 Groupoid.- Lie a of C*-Algebra The 3.6 Groupoids.- of Representations 3.5 *-Algebras.- Action 3.4 Groupoid.- Lie a of Algebra Convolution The 3.3 Groupoids.- Lie on Half-Densities 3.2 Groupoids.- 3.1 Algebroids.- Lie and Groupoids Lie 3 Monopole.- Dirac The 2.12 Equations.- Wong Classical the to Quantum the From 2.11 Hamiltonian.- Wong Quantum The 2.10 Representations.- Group Induced 2.9 Observables.- of Algebra Quantum The 2.8 H-Connection.- The 2.7 Equations.- Wong Classical The 2.6 Observables.- Classical of Construction 2.5 Group.- Gauge the and Automorphisms Bundle 2.4 Reduction.- Bundle Cotangent 2.3 Connections.- 2.2 Bundles.- 2.1 Fields.- Gauge External and Symmetries Internal 2 Orbits.- Coadjoint of Quantization Berezin 1.11 Groups.- Lie Compact of Theory Representation 1.10 Quantization.- Strict a as Algebra C* Group The 1.9 Theorem.- Peter-Weyl Generalized A 1.8 C*-Algebras.- Group 1.7 Algebra.- Enveloping Twisted The 1.6 Representations.- Projective 1.5 Structure.- Lie-Poisson (Twisted) The 1.4 Extensions.- Central and Multipliers 1.3 Actions.- Group Hamiltonian 1.2 Map.- Momentum the and Actions Algebra Lie 1.1 Algebras.- Lie and Groups Lie 1 Groupoids.- and Bundles, Groups, III Limit.- Classical its and Hamiltonian Quantum The 3.7 Manifolds.- Riemannian on Relations Commutation 3.6 Strictness.- of Proof 3.5 Manifolds.- Riemannian on Quantization Weyl 3.4 Geometry.- Riemannian Hamiltonian 3.3 Geometry.- Riemannian Some 3.2 Geometry.- Affine Some 3.1 Manifolds.- Riemannian on Quantization 3 Dynamics.- the of Limit Classical The 2.7 Space.- Flat on Fields Continuous and Quantization Strict 2.6 Space.- Flat on Quantization Weyl 2.5 Space.- Flat on Quantization Berezin of Properties 2.4 Space.- Flat on Quantization Berezin 2.3 Representation.- Metaplectic The 2.2 Representations.- its and Group Heisenberg The 2.1 Space.- Flat on Quantization 2 Kernels.- Reproducing and States Coherent 1.5 Positivity.- Complete 1.4 Quantization.- Berezin and States Coherent 1.3 C*-Algebras.- of Fields Continuous 1.2 Observables.- of Quantization Strict 1.1 Foundations.- 1 Limit.- Classical the and Quantization II C*-Algebra.- a of Space State Pure the for Axioms 3.9 Space.- State Pure the on Structure Poisson The 3.8 Space.- State Pure a in Property Two-Sphere The 3.7 Observables.- and States with Associated Lattices 3.6 Lattices.- Orthomodular 3.5 Rule.- Leibniz and Unitarity 3.4 Product.- Jordan and Theorem Spectral 3.3 Observables.- of Algebra the of Identification 3.2 Probability.- Transition a with Spaces Poisson 3.1 Observables.- to States Pure From 3 Spaces.- Probability Transition as Spaces State Pure 2.8 Spaces.- Probability Transition 2.7 Algebras.- Poisson of Representations 2.6 Manifolds..- Symplectic as Spaces Hilbert (Projective) 2.5 Manifold.- Poisson a of Decomposition Symplectic The 2.4 Manifolds.- Poisson 2.3 Representations.- Irreducible and States Pure 2.2 Sets.- Convex Compact and States Pure 2.1 Spaces.- State Pure of Structure The 2 Algebras.- Neumann Von 1.7 Spaces.- State and C*-Algebras of Examples 1.6 GNS-Construction.- the and Representations 1.5 States.- 1.4 Morphisms.- and Order, Positivity, 1.3 C*-Algebras.- Commutative and Spectrum 1.2 C*-Algebras.- and Algebras Jordan-Lie 1.1 Observables.- of Algebras of Structure The 1 States.- Pure and Observables I Theory.- Quantum Relativistic in Applications Induction.- Reduction.- Induction.- and Reduction IV. Algebroids.- Lie and Groupoids Lie Fields.- Gauge External and Symmetries Internal Algebras.- Lie and Groups Lie Groupoids.- and Bundles, Groups, III. Manifolds.- Riemannian on Quantization Space.- Flat on Quantization Foundations.- Limit.- Classical the and Quantization II. Observables.- to States Pure From States.- Pure Observables.- States.- Pure and Observables I. Overview.- Introductory bag Bei der Erstellung sollten entsprechende Regeln unbedingt eingehalten werden Sale Diese Sonderwünsche werden durch den Onlinehändler erst verwirklicht Tablets und ist eine Unterkategorie des eCommerce

Verwirrt? Link zum original Text


EAN: 9780387983189
Marke: Springer Berlin,Springer New York,Springer
weitere Infos: MPN: 9233812
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 189.00 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage

Shop Artikelname Preis  
Mathematical Topics Between Classical and Quantum Mechanics CHF 189.00 Shop besuchen
Verwandte Produkte
Chaos in Classical and Quantum Mechanics
CHF 111.00

mehr Informationen

Berichten Sie über das Produkt

Contents: Introduction.- The Mechanics of Lagrange.- The Mechanics of Hamilton and Jacobi.- Integrable Systems.- The Three-Body Problem:...

Classical Mechanics: Applied Mechanics and Mechatronics
CHF 111.00

mehr Informationen

Berichten Sie über das Produkt

Preface.- List of Symbols.- 1. Dynamics in Mechatronic Systems.- 2. Equations of Motion of a Rigid Spherical Body.- 3. Theory of...

The Historical Development of Quantum Theory: Part 1 The Fundamental Equations of Quantum Mechanics
CHF 168.00

mehr Informationen

Berichten Sie über das Produkt

I: The Fundamental Equations of Quantum Mechanics, 1925-1926.- I Paul Dirac's Intellectual Development.- I.1 Growing Up in Bristol.-...