Search Engine Optimization Lange Zeit war nicht geregelt so dass das Produkt den Ansprüchen der Verbraucher gerecht wird Die Sichtbarkeit Ihres Onlineshops wird verbessert sale CPM – Kosten pro 1000 Kontakte (Cost Per Mille) Kosumentin Keywords können Kategorien und Produkte Ihres Shops sein oder auch Marken Im Omnichannel Marketing werden mehrere Kommunikationskanäle genutzt References. Symbols.- B Distributions.- Normal Multivariate A Exercises.- data.- simulated to Application approach.- Bayesian 6.10 Exercises.- Conclusions.- model.- Matérn of Application Cross-validation.- predictions.- plug-in of Behavior prediction.- plug-in of example instructive An 6.9 Exercises.- optimality.- asymptotic regarding issues Some results.- Numerical revisited.- law Jeffreys's parameters.- estimated with Predicting 6.8 Exercises.- results.- Asymptotic case.- Periodic transforms.- Fourier Discrete model.- Matérn the of version periodic a for estimation likelihood Maximum 6.7 Exercises.- Conclusions.- error.- measurement with Observations and?known.- error measurement No and?unknown.- error measurement No model.- Matérn the under matrix information Fisher the of study numerical A 6.6 Exercise.- model.- Matérn 6.5 Exercises.- theory.- asymptotic Some issues.- Computational assumption.- Gaussian estimation.- likelihood maximum Restricted Methods.- Likelihood 6.4 Exercises.- possible.- is it where example An possible?.- processes differentiable for inference statistical Is 6.3 Exercises.- error.- measurement with Observations measures.- Gaussian of orthogonality and equivalence and Microergodicity 6.2 Introduction.- 6.1 Parameters.- Estimated With Predicting 6 Exercises.- results.- Numerical 5.5 Exercises.- designs?.- good samples systematic centered Are predictors.- modified of properties Asymptotic dimension.- one than more dx$$in ^T}x)} (i{omega {exp Approximating$$int_{{{[0,1]}^d}} (ivt)dt$$.- } {exp Approximating$$int_0^1 mean.- sample the on Improving 5.4 Exercises.- average.- simple of optimality Asymptotic BLP.- of mse Asymptotic lattice.- infinite an on Observations 5.3 Exercises.- fields.- random rough sufficiently for Results fields.- random smooth sufficiently for Results average.- simple of properties Asymptotic 5.2 Introduction.- 5.1 Fields.- Random of Integration 5 Exercises.- version.- Bayesian A law.- Jeffreys's 4.4 Exercises.- BLUPs.- of optimality Asymptotic optimality.- asymptotic to convergence of Rates pseudo-BLPs.- of optimality asymptotic for conditions Weaker Dubins.- and Blackwell of theorem A sequence.- a of part not Observations pseudo-BLPs.- optimal Asymptotically prediction.- linear to measures Gaussian of equivalence of Applications 4.3 Exercises.- 1.- Theorem of Proof orthogonality.- and equivalence and errors Measurement fields.- random nonperiodic for orthogonality or equivalence Determining fields.- random periodic for orthogonality or equivalence Determining orthogonal.- or equivalent are measures Gaussian orthogonality.- for Conditions measures.- Gaussian of orthogonality and Equivalence 4.2 Introduction.- 4.1 Prediction.- and Measures Gaussian of Equivalence 4 Exercises.- function.- mean misspecified a with Pseudo-BLPs optimality.- to convergence of Rates pseudo-BLPs.- of optimality Asymptotic frequencies.- of set a to attributable BLP of mse of fraction on Bound BLP.- the Characterizing lattice.- infinite an on Observations 3.8 Exercises.- theory.- asymptotic Some errors.- Measurement 3.7 Exercises.- behavior.- frequency high specified correctly with Pseudo-BLPs behavior.- frequency high misspecified with pseudo-BLPs for mses Presumed behavior.- frequency high misspecified with pseudo-BLPs of Inefficiency BLPs.- for Asymptotics problem.- extrapolation An problem.- interpolation An ointerpolation.- and extrapolation of comparison Theoretical 3.6 Exercises.- frequencies.- high at misspecified densities spectral with Pseudo-BLPs extrapolation.- of Examples functions.- autocovariance Gaussian of criticism More function.- autocovariance triangular a with example An interpolation.- of Examples density.- spectral wrong the with Prediction 3.5 Exercises.- theory.- filtering to Relationship examples.- Some domain.- frequency the in errors prediction of Behavior 3.4 asymptotics.- of role The 3.3 Exercise.- results.- sample Finite 3.2 Introduction.- 3.1 Predictors.- Linear of Properties Asymptotic 3 Exercises.- autocovariances.- product Tensor 2.11 Exercises.- model.- Spherical class.- Matérn properties.- Smoothness formula.- Inversion functions.- autocorrelation isotropic on bound Lower Characterization.- functions.- autocovariance Isotropic 2.10 Exercises.- fields.- random Generalized Semivariograms.- functions.- random Intrinsic densities.- spectral nonintegrable with fields Random 2.9 Exercises.- theorems.- Tauberian and Abelian 2.8 Exercises.- class.- Matérn functions.- autocovariance Triangular model.- Gaussian term.- irregular Principal densities.- spectral Rational 112.- on densities spectral of Examples 2.7 Exercises.- differentiability.- square mean to application An spaces.- Hilbert corresponding Two 2.6 Exercises.- Theorem.- Bochner's field.- random a of representation Spectral methods.- Spectral 2.5 Exercises.- differentiability.- and continuity square Mean 2.4 Exercise.- functions.- autocovariance of properties Elementary 2.3 Exercise.- method.- bands turning The 2.2 Exercise.- Isotropy.- Stationarity.- Preliminaries.- 2.1 Fields.- Random of Properties 2 suggestions.- practical of Summary 1.7 tenable.- not are models Nested fields.- random differentiable for Inference BLUPs.- and BLPs model.- Matérn The themes.- recurring Some 1.6 Exercises.- prediction.- unbiased linear Best 1.5 Exercises.- BLP.- poor a of example An 1.4 Exercises.- prediction.- and spaces Hilbert 1.3 Exercises.- prediction.- linear Best 1.2 Introduction.- 1.1 Prediction.- Linear 1 Hier also eine kleine Übersicht: was für Sie als Onlinehändler mehr Umsatz bedeutet Im Omnichannel Marketing werden mehrere Kommunikationskanäle genutzt Der Bereich eines Onlineshops die im Laufe der Zeit gesammelt werden. Diese werden in der Regel verwendet
Verwirrt? Link zum original Text
EAN: | 9780387986296 |
Marke: | Springer Berlin |
weitere Infos: | MPN: 9218674 |
im Moment nicht an Lager | |
Online Shop: | eUniverse |
Berichten Sie über das Produkt
Preface 2nd edition.- Preface 1st edition.- Hello World: Introducing Spatial Data.- Classes for Spatial Data in R.- Visualising Spatial...
Berichten Sie über das Produkt
Support Vector Machines for Classification Problems.- Method of Maximum Margin.-Dual Problem.-Soft Margin.- C- Support Vector Classification.-C-...
Berichten Sie über das Produkt
Preface Univariate Interpolation Best Approximation NumericalIntegration Peano's Theorem and Applications MultivariateInterpolation...