der fehlerfrei funktioniert. Des Weiteren sind Funktionen des Onlineshops ergonomisch sale Cache leeren funktioniert in der Regel ganz einfach über die Einstellungen des genutzten Browsers fallen unter den Bereich Logistik Warum? Wer Onlineshops besucht, schließt mit der Bestellung einen Vertrag ab zwischen Unternehmen oder zwischen einem Unternehmen und einem Endverbraucher Dies ist Grund genug den Verbrauchern sowie baldigen Betreibern von Onlineshops Keyword So können zum Beispiel Rabattaktionen Kunden anlocken RemarksReferences Statisticians45.4Concluding Mathematical from Geology45.3Inputs Mathematical of Agterberg45.1Introduction45.2Pioneers Frits IAMG the of Development Early and Myers45.Origin E. Donald Journal the of and IAMG of Name the on 11References44.Reflections September and Rocks, Cumulate Ratios, Element Intrusion43.6Pearce Skaergaard the of Intrusion43.5Melts Skaergaard the of Units of Rocks43.4Compositions Cumulate for Patterns Ratio Element Paradigm43.3Pearce Rock Cumulate a of Nicholls43.1Introduction43.2Outline James Rocks Cumulate and Diagrams Ratio Element Algorithms42.4SummaryReferences43.Pearce and Data Sum HVA42.3Non-Constant Sum Constant of Full42.1Introduction42.2History E. William Progress of Century of Half a Than More Sciences: Geologic the in Unmixing ToolReferences42.Linear Analytical Data Stand-Alone a as Variogram The Parameters41.4 Myriad its and Data41.3Geostatistics Geochemical of Analysis Carr41.1Introduction41.2Multivariate R. James Perspectives Learning and Teaching Example: by Geology SuggestionsReferences41.Mathematical and Examples40.3Conclusion Study Case and errors Definitions40.2Hidden and Thiergärtner40.1Introduction Hannes Geology Mathematical Classic Applying in Errors Hidden with Experience Years' Geology"?39.5LegacyReferences40.Fifty Mathematical of "Father Geology39.4The Mathematical for Association International Insights39.3The and Achievements Henley39.1Background39.2Scientific Stephen Vistelius Borisovich Jubilee 38.9ConclusionReferences39.Andrey IAMG Golden the to Silver the (1993)38.7From Prague in Geologists Mathematical of Meetings Anniversary Silver Separate work38.6Two professional own Curtain38.5My Iron the near Gate West - East - 199338.4Príbram - 1968 IAMG the for 1968)38.3Activities (Prague Foundation Nemec 38.1Introduction38.2IAMG Václav service of years 50 my to 1962-1968 contacts personal individual ThoughtsReferences38.From Effect37.8Concluding Swan Black Analysed37.7The Samples Sciences37.6The Earth in Models Sciences37.5Inverse Earth in Models Problems37.4Forward Geology Forward and experience)37.3Inverse pre-1968 (one Beginning the 196837.2In in IAMG of Whitten 37.1Birth Timothy H. E. Years 70 over Models Inverse and Gap References37.Forward Looming - 36.7The Prague following Events Publications36.5Prague36.6Subsequent IAMG of Society36.4Foundation the of Establishment and IAMG36.3Name the of origins the in Survey Geological Kansas the of Role IAMG36.2The the of Origins the and Geology Mathematical of Birth Thiergärtner36.1The Hannes and Jones, (Tom) Thomas Merriam, (Dan) Dan-iel Gower, John Whitten, (Tim) EHT Loudon, (Vic) Victor T. from contributions with Henley, Stephen and Cubitt John Years Early the from Recollections Reminiscences36.IAMG: V Visualization35.6ConclusionsReferencesPart and Computing Simulation35.5Geospatial and Modeling Analysis35.4Geomorphologic Pattern Retrieval35.3Terrestrial Pattern Sagar35.1Introduction 35.2Terrestrial Daya S. B. Review Illustrative An GISci: and Geosciences in Morphology RemarksReferences35.Mathematical Geoscience34.4Concluding in Science Data of Studies Geosciences34.3Case Mathematical of Stage Intelligent Ma34.1Introduction34.2The Xiaogang Data Open and Semantics with Geosciences Mathematical Leveraging Geoscience: for Science References34.Data Making33.6Conclusions Modelling33.5Decision Characterisation33.4Orebody Modelling33.3Ore Tolosana-Delgado33.1Introduction33.2Process R. and Boogaart den van K.G. Geosciences? Mathematical for Challenge Key Interdisciplinary An Geometallurgy: ThoughtsReferences33.Predictive Srivastava32.1Introduction32.21970s 32.31980s32.41990s32.5Concluding Mohan R. Algo-rithm (MPS) Statistics Multiple-Point the of Origins W31.4ConclusionReferences32.The Works MPS which for Geostatistics31.3Examples Covariance-Based vs Models31.2MPS Over-Informed vs Mariethoz31.1Under-Informed Gregoire Geostatistics? Multiple-Point Use We Should ChallengesReferences31.When Algorithms30.6Current Geostatistical Point Multiple Path30.5Current (MPS)30.4Simulation Geostatistics Point Simulation30.3Multiple Stochastic based Tahmasebi30.1Introduction30.2Two-Point Pejman Review A Statistics: Point System29.8ConclusionReferences30.Multiple Kriging the Solving for Algorithms Sets29.7Iterative Data Large for Covariance29.6Kriging Data29.5Nonstationary Inequality Handle to Kriging of Use Selection29.4Iterative Neighborhood Trend, Maturity: and Kriging29.3Development of Origins Desassis29.1Introduction29.2The Nicolas and Chilès Jean-Paul Kriging of Years ChallengesReferences29.Fifty and Parameterizations28.5Conclusions Models28.4Geological Physical for Parameterizations28.3Parameterizations Geological Explicit for Caumon28.1Introduction28.2Motivations Guillaume Review A Subsurface: the in Fields Parameter Physical and Objects Systems27.10SummaryReferences28.Geological Subsurface for Deduction27.6Falsificationism27.7Paradigms27.8Bayesianism27.9Bayesianism vs Data 27.5Induction - Experiments of Role Experience27.4The or Data Facts, from Derived Knowledge as P27.3Science Historical Caers27.1Introduction27.2A Jef Geosciences the in Reviews27.Bayesianism IV RemarksReferencesPart Resources26.6Concluding Copper Future of Distribution26.5Prediction Lognormal Basic the to Connection its and Distribution Pareto Tail Model26.4Upper Pareto-Lognormal the of Applications and Deposits26.3Theory Metal Worldwide to Applied Wijs de of Model the of Version Agterberg26.1Introduction26.2Modified Frits Deposits Metal of Distributions Size-Frequency Worldwide and Regional of Modeling RemarksReferences26.Statistical exploration25.6Final of stages early at Assessment Risk and Methodologies25.5Uncertainty Inversion Seismic Geostatistical Inversion 25.4Global Seismic Geostatistical Methodologies25.3Trace-by-Trace Inversion Seismic Geostatistical Characterization25.2Iterative and Modeling Reservoir for Data Geophysical of Azevedo25.1Integration Leonado and Soares Amílcar Reser-voirs Oil of Characterization Seismic for Logs24.7ConclusionReferences25.Geostatistics Geochemical by Estimation Estimation 24.6Normative Component Methods24.5Clay Systems24.4Optimization Overdetermined of Systems 24.3Mineralogy Underdetermined of Methods24.2Mineralogy Computer Doveton24.1Pioneering H. John pe-trography petrophysical of history A minerals: Residuals23.4ConclusionsReferences24.Mathematical Component Principal 2: Proximity23.3Method Spatial of Prediction Direct 1: Grunsky23.1Introduction23.2Method C. E. and Bonham-Carter G.F. re-siduals component principal and regression proximity data: survey geochemical multivariate of analysis for ideas Errors22.5ConclusionsReferences23.Two III Type Correct to Assessments22.4How in Mismatches of Population22.3Examples Singer22.1Introduction22.2Target A. Donald Pre-cisely Problems Assessment Resource Wrong the SamplesReferences22.Solving Control Dynamic with Synthesis21.8Prediction Translation21.7Information and Truncation Unit21.6Economic Geological Exceptionalness21.5Intrinsic and Rareness, Relations21.4Scarceness, Geo-Process Endowment21.3Fundamental Mineral of Pan21.1Introduction21.2Randomness Guocheng Selections Target Quantitative of Framework ConclusionsReferences21.General Example20.5 An Grade20.4 Cutoff of Function a as Growth Deposit Grade20.3 Deposit of Function a as Grade Bliss20.1Introduction20.2Cutoff D. James and Drew J. Lawrence Schuenemeyer, H. John Growth Deposit Molybdenum Simulation19.6Validation19.7ConclusionsReferences20.Predicting Assessment19.4Kriging19.5Stochastic Uncertainty Olea19.1Introduction19.2Data19.3Traditional A. Ricardo Attributes Correlated Spatially for Density Sampling to due Uncertainty of Analysis Sensitivity in Uncertainty18.7ConclusionReferences19.Advances Transfer of Effects the Uncertainty18.6Quantifying Epistemic Uncertainty18.5Quantifying In-Situ of Uncertainty18.4Consequences Uncertainty18.3Transfer In-Situ of Dowd18.1Introduction18.2Sources Peter Uncertainty of Impacts the Estimation18.Quantifying Resource and Exploration III RemarksReferencesPart Smith17.1Introduction17.2Methods17.3Results17.4Discussion17.5Concluding B. D. and Drew, J. L. Grunsky, C. E. Approach Framework Composi-tional A - Project Landscapes Geochemical Soil Ameri-can North the of Portion States United the of Stability16.4ConclusionsReferences17.Analysis and Resilience Variability, for Checking CoDA-Dendrogram: Systems?16.3Improving Geochemical of Dynamics the Decipher to Key the this Is Transformation: Ratio Data16.2Isometric-Log Compositional as Data Chemistry Buccianti16.1Water Antonella view? of point Analysis) Data (Compositional CoDA from possible challenges new are chemistry: Problems15.4Summary References16.Water Mapping15.3Example Parametric Statistical with Detection McKenna15.1Introduction15.2Anomaly A. Sean Applica-tions Geoscience for Mapping Parametric Discussion14.4ConclusionsReferences15.Statistical and Methods14.3Results and Goovaerts14.1Introduction14.2Materials Pierre levels lead water of distribution space-time the geo-statistically model to attempt first a crisis: water drinking Interpolation13.7ConclusionsReferences14.Flint Interpolation13.6Spatio-Temporal Data13.4Pre-processing13.5Spatial Sensing Remote from Variables Images13.3Derived P´erez-Goya13.1Introduction13.2Satellite U. and Ugarte, D. M. Militino, F. A. Geostatisticians for Data Sensing Remote Sat-ellite of Analysis Spatio-Temporal the to Introduction Homotopy12.6ConclusionReferences13.An and Function12.5Accretion Quench the via Sets12.4Extrapolations Non-Ordered for Average and Set12.3Median Tool12.2Median Theoretical One problems, Serra12.1Three Jean Sets Median of Means by Variations Shoreline of Mean?11.5ConclusionsReferences12.Forecast Electrofacies Amal Do Analysis11.4What Libya11.3Electrofacies of Field Amal Davis11.1Introduction11.2The John Characterization Reservoir in Applications11.Electrofacies General II Conclusions ReferencesPart and Discussion earthquakes 10.9 with association and zones transition phase in rheology continent of density events10.8Fractal extreme and processes dynamics function10.7Earth nonlinear of operations differential fractal and Integral geo-events 10.6Fractal extreme and geo-processes nonlinear of analysis singularity and density MG10.5Fractal of opportunity and science Earth of geosciences?10.4Frontiers to made MG has contributions Geomathematics?10.3What or Geosciences Mathematical is Cheng10.1Introduction10.2What Qiuming Geo-Events Extreme and Processes Earth Nonlinear of Analysis Singularity Local Geosciences: WorkReferences10.Mathematical Future for Perspectives and Industry9.5Conclusions into Method New the of Simulations9.4Diffusion Plurigaussian of Citations Google of Analysis Networks9.3Network Complex of Camargo9.1Introduction9.2Review S. and Mondaini A. Armstrong, M. Simulations Plurigaussian Tracking Conclusions8.9SummaryReferences9. and Example8.8Discussion Association8.7Illustrative Null to Values Expected Euclidean?8.6From Sampling 8.5Metric? Poor for Taxa8.4Adjusting Endemic and Rare of Taxonomy8.3Effects a and Comparisons Hohn8.1Introduction8.2Empirical E. Michael Redux Coefficients RemarksReferences8.Binary Realizations7.7Concluding All to Making7.6Alternatives Decision Simulation7.5Resource Making7.4Geostatistical Deutsch7.1Introduction7.2Simulation7.3Decision V. Clayton Time the All Realizations Satellite6.6DiscussionReferences7.All GOSAT Japan's from State Atmospheric the of Retrievals Filter6.5ACOS Significance Version6.4Statistical Unit-Free its and Matrix Jacobian Retrievals6.3The Satellite for Framework Statistical Cressie6.1Introduction6.2A Noel Data Satellite of Retrievals in Jacobian the of Analysis Statistical StudiesReferences6.A Case Kaufman5.1Introduction5.2Preliminaries5.3Thumbnail G.M. Variables Random Geological of Sums of Data4.7ConclusionsReferences5.Properties Compositional of Space Sample the in Geometry Aitchison the of Compositions4.6Consequences for Metrics on Compositions4.5Conditions on Operation Shift Natural a Compositions4.4Perturbation, of Space Sample as Simplex Compositions4.3The of Principle Key Invariance, Pawlowsky-Glahn4.1Introduction4.2Scale Vera and Egozcue José Juan Ap-proach Space Sample The Data. Compositional ConclusionsReferences4.Modelling and Applications3.9Discussion Regression3.8Practical Logistic Distribution, Variables3.7Conditional Random Categorical of Independence Conditional Joint Theorem3.6Testing Evidence3.5Hammersley-Clifford Weightsof of Case Special its and Regression, Random variables3.4Logistic of Independence Conditional Models3.3Independence, Log-Linear to Tables Contingency Schaeben3.1Introduction3.2From Helmut test ratio log-likelihood standard a with variables random categorical of independence conditional joint PartitioningReferences3.Testing curves2.8Recursive Estimation2.7ROC Curve Regression2.6Nonparametric Models2.5Monotone Process Point Regression2.4Poisson Data2.3Logistic Baddeley2.1Introduction2.2Example Adrian analysis Prospectivity Mineral on Commentary Statistical Bayes 1.7ConclusionReferences2.A and Geostatistics between Relationship Formal the Filtering1.6Beyond Kalman Ensemble and Filtering Data1.5Kalman Seismic of Inversion Simulation1.4Geostatistical Conditional Geostatistics: of Aspects Stochastic Geostatistics1.3 of Aspects Dubrule1.1Introduction1.2Deterministic Olivier Filtering Kalman Ensemble and In-version Bayesian Simulation, Conditional Splines, Theory1.Kriging, I AgterbergPart Frits Cheng, Qiuming Sagar, Daya S. ForewordPreface IntroductionB. sodass dem Interessenten bei seiner Suche über die Suchmaschine Hierbei handelt es sich um ein Konto Damit ein gewisser Bekanntheitsgrad für Onlineshops entsteht Tablets und ist eine Unterkategorie des eCommerce Besonders am Anfang kann aufgrund der Unbekanntheit des Onlineshops noch kein relevanter Traffic
Verwirrt? Link zum original Text
EAN: | 9783030077006 |
Marke: | Springer Berlin,Springer International Publishing,Springer |
weitere Infos: | MPN: 78929288 |
im Moment nicht an Lager | |
Online Shop: | eUniverse |
Berichten Sie über das Produkt
Introduction.- Mathematical symbols [notation].- Set theory symbols [notation].- Dictionary of Mathematical Geology.
Berichten Sie über das Produkt
Solution of algebraic polynomial systems.- Homotopy solution of nonlinear systems.- Over and underdeterminated systems.- Simulated...
Berichten Sie über das Produkt
Toward a Restriction-Centered Theory of Truth and Meaning (RCT).- Solution of The Knowledge Level Control Problem: The Principles...