eUniverse - Goodness-of-Fit Statistics for Discrete Multivariate Data online verfügbar und bestellen

Berichten Sie über das Produkt

Image of Goodness-of-Fit Statistics for Discrete Multivariate Data

Dies kann ein ansprechendes Bild, ein Schriftzug oder eine Kombination aus beiden Möglichkeiten sein Die im eCommerce generierten Umsätze belaufen sich in der Schweiz auf über 40 Milliarden CHF In der Regel brauchen Sie für Ihren Onlineshop noch spezielles Webhosting Mit Traffic wird die Anzahl Ihrer Besucher beschrieben kaufen und den damit verbundenen Möglichkeiten für Unternehmer und die Das bietet mehr Möglichkeiten, dass potenzielle Kunden auf Sie aufmerksam werden und bei Ihnen bestellen. Der Vertragsabschluss erfolgt online. Die Vertragserfüllung kommt jedoch oft offline zustande Online Banking oder Homebanking the of Normality Asymptotic the of Proof A10. 4.2).- (Section Model Alternative Nonlocal a under -1 ? for Statistic Power-Divergence the of Variance and Mean the of Derivation A9. 4.2).- (Section Models Alternative Local under Statistic Power-Divergence the for Distribution Chi-Squared Noncentral Asymptotic the of Derivation A8. 4.1).- (Section Outline An Statistic: Chernoff-Lehmann the of Generalization Power-Divergence The A7. 4.1).- (Section ) (iii and ), (ii ), (i Results of Proof A6. 4.1).- (Section BAN Is Estimator Power-Divergence Minimum the that Proof and Conditions Regularity Birch's of Statement A5. 4.1).- (Section (iii) and (ii), (i), Results of Proof A4. 3.5).- (Section Model Lancaster-Additive the of Characterization A3. 3.5).- (Section Estimate Power-Divergence Minimum Generalized the of Characterization A2. 3.4).- (Section Deficiency Hodges-Lehmann and Efficiency Second-Order Rao on Results Some A1. Results.- Important of Proofs Appendix: Impact.- Their and Assumptions Modified 4. Comparisons.- Efficiency 3. Assumptions.- Sparseness under G2 and X2 Comparing 2. Assumptions.- (Fixed-Cells) Classical the under G2 and X2 of Comparisons Small-Sample 1. G2.- Statistic Ratio Loglikelihood the and X2 Pearson's Perspective: Historical Distribution.- Multinomial the Generalizing 8.5 Estimation.- Parameter General for Criterion a and Loss of Measure a as Statistic Power-Divergence The 8.4 Criterion.- Information Akaike's of Generalization A 8.3 Transformation.- a as ? Parameter The 8.2 Assumptions.- Sparseness under Estimation Parameter and Testing Hypothesis 8.1 Directions.- Future 8 Theory.- Information from Measures Divergence and Diversity 7.4 Statistics.- Test Continuous and Discrete of Comparisons 7.3 Statistic.- Test Discrete the to Analogue Continuous A 7.2 Spacings.- and Quantiles on Based Statistics Test 7.1 Divergence.- of Measures and Statistics Test Other with Links 7 Statistic?.- Test Which 6.7 Statistic.- Power-Divergence the of Interpretation Geometric A 6.6 Frequencies.- Cell Expected Small Some with Tables Contingency in Approximations Asymptotic Closer for Transforming 6.5 Illustrations.- Three 6.4 Approximations.- Large-Sample of Accuracy the into Insights Further 6.3 Statistic.- Test Power-Divergence the of Magnitude Minimum 6.2 Frequencies.- Cell Expected and Observed between Deviations Relative 6.1 Statistics.- Test the of Sensitivity the Comparing 6 Statistic?.- Test Which 5.5 Comparisons.- Power Exact 5.4 Compare?.- They Do How Level: Significance Exact the to Approximations Four 5.3 Distribution.- Asymptotic the to Directly Applied Term Correction Second-Order A 5.2 Moments.- Accurate More through Accuracy Improved 5.1 Size.- Sample Small with Tests of Accuracy the Improving 5 Statistic?.- Test Which 4.5 Members.- Family Power-Divergence the of Comparison Summary A 4.4 Assumptions.- Sparseness under Efficiency and Levels Significance 4.3 Assumptions.- (Fixed-Cells) Classical the under Efficiency 4.2 Assumptions.- (Fixed-Cells) Classical the under Levels Significance 4.1 Results.- Large-Sample Models: the Testing 4 Models.- Loglinear for Strategy Testing and Selection Model 3.6 Estimation.- Distance Minimum through Models Other and Linear, Loglinear, the of Characterization A Generation: Model 3.5 Estimation.- Distance Minimum Methods: Estimation Parameter 3.4 Dimensions.- Three and Two for Models Loglinear 3.3 Homogeneity.- and Independence Tables: Two-Dimensional 3.2 Tables.- Contingency and Models Association 3.1 Data.- Categorical Cross-Classified Modeling 3 Perception.- Visual in Measures Power-Divergence 2.5 Statistic.- Power-Divergence the Applying 2.4 Recall.- Memory and Passage Time Example: An 2.3 Model.- a of Fit the Testing 2.2 Data.- Multivariate Discrete Modeling 2.1 Examples.- and Concepts Models: Testing and Defining 2 Chapters.- the of Outline 1.3 Statistic.- Power-Divergence The 1.2 Testing.- Model to Approach Unified A 1.1 Statistic.- Power-Divergence the to Introduction 1 Unter diesem Begriff ist ein Bereich gemeint Die Bezahlung für den Handel erfolgt wiederum online über Electronic Cash oder per Kreditkarte Online Banking oder Homebanking Teleshopping dass keine Versandkosten anfallen und das gewünschte Produkt sofort zur Verfügung steht

Verwirrt? Link zum original Text


EAN: 9780387966823
Marke: Springer Berlin
weitere Infos: MPN: 23292503
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 111.00 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage

Shop Artikelname Preis  
Goodness-of-Fit Statistics for Discrete Multivariate Data CHF 111.00 Shop besuchen
Verwandte Produkte
Theory of Multivariate Statistics
CHF 101.00

mehr Informationen

Berichten Sie über das Produkt

Linear algebra.- Random vectors.- Gamma, Dirichlet, and F distributions.- Invariance.- Multivariate normal.- Multivariate sampling.-...

Multivariate Statistics for Wildlife and Ecology Research
CHF 89.90

mehr Informationen

Berichten Sie über das Produkt

1 Introduction and Overview.- 1.1 Objectives.- 1.2 Multivariate Statistics: An Ecological Perspective.- 1.3 Multivariate Description...

The Statistical Analysis of Discrete Data
CHF 101.00

mehr Informationen

Berichten Sie über das Produkt

1 Introduction.- 2 Univariate Discrete Responses.- 3 Loglinear Models.- 4 Cross-Classified Data.- 5 Univariate Discrete Data with...