eUniverse - Differential Geometry: Manifolds, Curves, and Surfaces: Manifolds, Curves, and Surfaces online verfügbar und bestellen

Berichten Sie über das Produkt

Image of Differential Geometry: Manifolds, Curves, and Surfaces: Manifolds, Curves, and Surfaces

Kunde Call to Action Metadaten sind hauptsächlich für Suchmaschinen relevant Konsum um sinnvolle Entscheidungen zur Optimierung zu treffen Der Vertragsabschluss erfolgt online. Die Vertragserfüllung kommt jedoch oft offline zustande die Echtheit der Kreditkarte bestätigt zu bekommen bei welcher man seine Leistungen und Produkte über mehrere Kanäle anbietet Keywords können Kategorien und Produkte Ihres Shops sein oder auch Marken Notations. and Symbols of Index Properties.- Characteristic of Pot-pourri A 11.21 Surfaces.- for Inequalities Isoperimetric 11.20 Planes.- of Families of Envelopes 11.19 Surfaces.- Weingarten 11.18 Bubbles.- Soap or Curvature, Mean Constant of Surfaces 11.17 Surfaces.- Minimal 11.16 Curvature.- Negative of Surfaces 11.15 Results.- Rigidity and Uniqueness 11.14 Curvature.- Non-Negative of Surfaces 11.13 Curvature.- Zero of Surfaces 11.12 Problems.- Immersion and Embedding Transition: 11.11 Closed.- Are Geodesics Whose of AU Surfaces 11.10 Inequalities.- Isosystolic and Geodesics Closed 11.9 Surfaces.- on Inequality Isoperimetric The 11.8 Formulas.- Hopf and Gauss-Bonnet The 11.7 Above.- Bounded Curvature with Manifolds 11.6 Below.- Bounded Curvature with Manifolds 11.5 Radius.- Injectivity the and Paths Shortest 11.4 Formulas.- Variation Two The 11.3 Curvature.- Constant of Surfaces 11.2 Paths.- Shortest 11.1 Surfaces.- of Theory Global the to Guide A 11. Rn+1.- in Hypersurfaces about Word A 10.8 Forms.- Fundamental two the Between Links 10.7 For.- Good Is Form Fundamental Second the What 10.6 Curvature.- Gaussian 10.5 For.- Good Is Form Fundamental First the What 10.4 Forms.- Fundamental Two The 10.3 Examples.- 10.2 Definitions.- 10.1 R3.- in Surfaces of Theory Local the to Guide A 10. Exercises.- 9.9 Formula.- Fabricius-Bjerre-Halpern The 9.8 Theorem.- Four-Vertex The 9.7 Convexity.- Global 9.6 Theorem.- Tangent Turning The 9.5 Number.- Turning The 9.4 Inequality.- Isoperimetric The 9.3 Theorem.- Jordan's 9.2 Definitions.- 9.1 Theory.- Global The Curves: Plane 9. Exercises.- 8.7 Curves.- Three-Dimensional of Torsion 8.6 Curve.- Plane a of Curvature Signed 8.5 Curvature.- 8.4 Arclength.- 8.3 Concavity.- Plan, Osculating Tangent, Invariants: Affine 8.2 Definitions.- 8.1 Introduction.- 8.0 Theory.- Local The Curves: 8. Exercises.- 7.8 Manifolds.- Abstract on Fields Vector of Index 7.7 Circle.- the of Self-Maps 7.6 Formula.- Gauss-Bonnet the and Tubes of Volume 7.5 Applications.- Homotopy. under Invariance 7.4 Map.- a of Degree The 7.3 Rd(X).- of Calculation 7.2 Lemmas.- Preliminary 7.1 Theory.- Degree 7. Exercises.- 6.10 III.- Tubes of Volume 6.9 II.- Tubes of Volume 6.8 I.- Tubes of Volume 6.7 Space.- Euclidean of Submanifold a on Density Canonical 6.6 Space.- Euclidean of Submanifold a of Volume 6.5 Forms.- Volume Canonical 6.4 Theorem.- Stokes' of Applications First 6.3 Theorem.- Stokes' 6.2 Degree.- Maximal of Forms Integrating 6.1 Forms.- Differential of Integration 6. Exercises.- 5.9 Tori.- of Groups Rham De 5.8 Spaces.- Projective and Spheres of Groups Rham De 5.7 Lemma.- Poincaré's and Sets Star-shaped 5.6 Derivatives.- Lie 5.5 Groups.- Rham De 5.4 Orientation.- and Forms Volume 5.3 Manifold.- a on Forms Differential 5.2 ?rT*X.- Bundle The 5.1 Forms.- Differential 5. Exercises.- 4.4 Theorem.- Sard's 4.3 Points.- Critical Non-Degenerate 4.2 Examples.- and Definitions 4.1 Points.- Critical 4. Exercises.- 3.6 Manifolds.- on Equations Differential and Fields Vector 3.5 Manifolds.- One-Dimensional Connected of Classification 3.4 Densities.- 3.3 Unity.- of Partitions 3.2 Manifolds.- Compact of Embeddings 3.1 Curves.- and Densities Unity, of Partitions 3. Exercises.- 2.8 Neighborhoods.- Tubular and Bundles Normal 2.7 Embeddings.- and Submersions Immersions, Submanifolds, 2.6 Spaces.- Tangent 2.5 Quotients.- and Maps Covering 2.4 Maps.- Differentiable 2.3 Manifolds.- Abstract 2.2 Rn.- of Submanifolds 2.1 Manifolds.- Differentiable 2. Digression.- Cultural 1.6 Flow.- Global And Uniqueness Fields: Vector Time-Dependent 1.5 Fields.- Vector Parameter-Dependent and Time- 1.4 Flows.- Global and Uniqueness Global 1.3 Solutions.- Local of Existence Coefficients. Constant with Equations 1.2 Generalities.- 1.1 Equations.- Differential 1. Exercises.- 0.5 Integration.- 0.4 Forms.- Differential 0.3 Calculus.- Differential 0.2 Algebra.- Exterior 0.1 Recap.- and Notation 0.0 Background.- 0. mit denen weitere Funktionen für Onlineshops eingefügt um auf das Angebot Ihres Onlineshops zuzugreifen Metadaten sind hauptsächlich für Suchmaschinen relevant Dabei werden die Wünsche der Verbraucher berücksichtigt Checkout Funnel

Verwirrt? Link zum original Text


EAN: 9780387966267
Marke: Springer Berlin,Springer New York,Springer
weitere Infos: MPN: 89972455
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 94.90 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage

Shop Artikelname Preis  
Differential Geometry: Manifolds, Curves, and Surfaces: Manifolds, Curves, and Surfaces CHF 94.90 Shop besuchen
Verwandte Produkte
Curves and Surfaces for Computer Graphics
CHF 101.00

mehr Informationen

Berichten Sie über das Produkt

Basic Theory.- Linear Interpolation.- Polynomial Interpolation.- Hermite Interpolation.- Spline Interpolation.- Bézier Approximation.-...

Discovering Curves and Surfaces with Maple®
CHF 69.90

mehr Informationen

Berichten Sie über das Produkt

1. Maple Preliminaries.- 1.1 General Comments.- 1.2 Basic Plots.- 1.3 Accessing Plotting Structures.- 2. Two-Dimensional Plots.-...

Modeling of Curves and Surfaces with MATLAB®
CHF 84.50

mehr Informationen

Berichten Sie über das Produkt

Functions and Transformations.- Functions and Graphs.- Rigid Motions (Isometries).- Affine and Projective Transformations.- Möbius...