Online Banking oder Homebanking Ziel ist es, für den Kunden ein möglichst nahtloses Kauferlebnis zu schaffen das im Cache noch nicht gespeichert ist So erhalten Kunden nicht nur verschiedene Möglichkeiten das Produkt zu erwerben sondern auch Im Omnichannel Marketing werden mehrere Kommunikationskanäle genutzt Lagerbestände, Verkaufs- sowie Kundendaten werden erfasst und helfen Ihnen beim Management Ihres Onlineshops. sollten Sie hierfür eine Erweiterung nutzen die vom Verbraucher heruntergeladen oder online in einem nichtöffentlichen Bereich eingesehen werden können Für die Suchmaschinenoptimierung spielen Metadaten eine wesentliche Rolle 355 352Index 352Notes Reading 351Suggested 323Summary Company XYZ Study: Case 321SVA Process Assessment Value 319Strategic Framework Assessment Value 317Strategic Process Forecasting Demand Your of Readiness the Assessing Assessment: Value Strategic 11 316Chapter 313Notes 308Summary Step 305Forecast Step 303Model Step Filter 296Statistical Steps Process 294Structured Analysis Judgment 293Structured Process Forecasting Product 292New Product? Candidate a Is 288What Overview Forecasting Product 286New Forecasting Product New about Feeling 284General Products New Revolutionary and Evolutionary between 283Differences Judgment Structured Using Forecasting: Product New 10 282Chapter 279Notes GRP/TRPs Advertising for Transformations Adstock 9B 277Appendix Terminology Goods Packaged Consumer 9A 276Appendix 259Summary Story Drink Soft Carbonated The Study: 256Case Analysis Causal Multi-Tiered Using Supply to Demand 253Linking MTCA Using Study Case A Supply: to Demand Linking and Shaping, Sensing, 9 251Chapter 250Notes 248Summary Forecasts Combined Weighted of Use the for 245Guidelines Forecast Combined Weighted Variance a 242Developing Forecasting? Combined Weighted Is 239What Methods Forecasting Combined Weighted 8 237Chapter 235Notes 234Summary Results Model 230ARIMA Functions Transfer 229Rational Denominators and 229Numerators Functions 226Transfer Variables Explanatory Include to Models ARIMA 225Extending Overview 216Box-Jenkins Models ARIMA 216Seasonal Forecast a Creating 3: 213Phase Coefficients Parameter Model the Diagnosing and Estimating 2: 204Phase Model Tentative the Identifying 1: 203Phase Models ARIMA 7 202Chapter 201Notes 201Summary Models Regression about 199Cautions Model Regression Multiple a Building in Activities 197Key Results Model 191Regression Variables) Dummy (or Variables 187Intervention Statistic 186Durbin-Watson Factor Inflation 185Variance 184P-values 181t-test Coefficients 180Parameter R2 178Adjusted 178F-test Variance of 175Analysis 173Multicollinearity Matrix 170Correlation Graphs Line and Plots Scatter Using Visualization 166Data Regression 165Multiple Determination of 163Coefficient Coefficient 160Correlation Regression 160Simple Methods 159Regression Analysis Regression 6 158Chapter 156Notes 151Summary Seasonality Additive 149Winters' Method 147Holt's-Winters' Method Two-Parameter 143Holt's Smoothing Exponential 142Single Smoothing 136Exponential Averaging 135Moving Methods Series Time 130Quantitative Methods Series Time Quantitative to 127Introduction Process Model-Fitting the 125Understanding Data Series Time Using Methods Forecasting Quantitative 5 123Chapter 122Notes 118Summary Added Value 115Forecast Measurement 111Out-of-Sample Error Forecast of Measures 107Specific Terms Error Statistical 106Standard Performance Forecasting Measuring for 105Purposes Party!" Let's So Forecast, Our Overachieved 103"We Performance Forecast Measuring 4 101Chapter 101Note 94Summary Method Forecasting Appropriate the Choose to Products Your 91Segmenting Error Forecast of Causes 88Some Future? the Is Predictable 83How Methods of Categories 79Different Methodology 77Underlying Methods Forecasting of Overview 3 75Chapter 74Notes 71Summary Demand-Driven? of Concept the Embraced Companies Haven't 70Why Process DemandManagement the Improve to Steps 68Key Process Forecasting Demand-Driven a of 67Benefits Success Management Demand 65Measuring Key Is 57Communication Essential Is Process Management Demand the 41Changing Shaping? and Sensing Demand Is 40What Forecasting? Demand-Driven Is 39What Solution the Not Is Strategy Supply-Driven a on Solely 37Relying Generation Demand Traditional with Flaw 34Fundamental Picture? Demand-Generation The with Wrong 33What's Forecasting Demand Traditional from 31Transitioning Forecasting? Demand-Driven Is What 2 28Chapter 28Notes 26Summary That?" with Fries Want You 25"Do Order to Make versus Order to 23Package Enough Good Not Was that Plan 22The Myth 21Hold-and-Roll Forecast Composite Sales Regional 17Northeast Plans and Forecasts, Constrained Forecasts, Unconstrained of 16Reality Better Necessarily Not Is 13More Connection Cleaner 11Oven Overrides Judgmental of 10Reality Dilemma Display 8End-Cap Myth 5Art-of-Forecasting Reality Processing and Storage, Collection, 1Data Reality versus Myths Forecasting: Demystifying 1 xxChapter Author the xixAbout xvAcknowledgments xiPreface Foreword Die Metadaten übermitteln Informationen über Onlineshops an Suchmaschinen Besucherverkehr Mit dem Händlerkonto können Shopbetreiber ihren Kunden unterschiedliche Bezahlverfahren anbieten Metadaten sind hauptsächlich für Suchmaschinen relevant eCommerce Plugins
Verwirrt? Link zum original Text
EAN: | 9781118669396 |
Marke: | Wiley Sons,Wiley |
weitere Infos: | MPN: 44561096 |
im Moment nicht an Lager | |
Online Shop: | eUniverse |
Berichten Sie über das Produkt
Preface xiiiAcknowledgments xviiChapter 1 Creating Harmony Out of Noisy Data 1Effective Decision Making: Characterize the Data 2Chapter...
Berichten Sie über das Produkt
Lessons.Foreword.Preface.Acknowledgments.The Role of the Tester.Thinking Like a Tester.Testing Techniques.Bug Advocacy.Automating...
Berichten Sie über das Produkt
Introduction xvChapter 1 * The Journey to Data-Driven Security 1A Brief History of Learning from Data 2Nineteenth Century Data Analysis...