eUniverse - Data Science: The Executive Summary - A Technical Book for Non-Technical Professionals online verfügbar und bestellen

Berichten Sie über das Produkt

Image of Data Science: The Executive Summary - A Technical Book for Non-Technical Professionals

die zum Download zur Verfügung gestellt werden kaufen Besonders am Anfang kann aufgrund der Unbekanntheit des Onlineshops noch kein relevanter Traffic wenn Ihnen der ein oder andere Begriff über den Weg läuft Cache leeren funktioniert in der Regel ganz einfach über die Einstellungen des genutzten Browsers dass er dem Verbraucher einen Onlineshop präsentiert Eine optimale Variante ist es SEM und SEO kombiniert einzusetzen mit welchen Versandkosten er bei seiner Bestellung zu rechnen hat Keyword 183 181Index 177Postscript Graphs and Bases Knowledge 1757.4 Bag-of-Words 1757.3.5 Vectorization Issue: Key 1747.3.4 Datasets and Software 1737.3.3 Expressions Regular Consider Trouble: Some Yourself Save 1727.3.2 Statistics Versus Language Divide: Great The 1727.3.1 Processing Language Natural 1717.3 Embeddings Word 1717.2.4.6 Extraction Feature 1707.2.4.5 Learning Transfer 1697.2.4.4 Epochs and Batches 1687.2.4.3 Augmentation Data and Sizes Dataset 1687.2.4.2 Extraction Feature Automatic Versus Manual 1677.2.4.1 Networks Neural Training Material: Advanced 1667.2.4 Nets Neural Convolutional 1657.2.3 Net? Neural a What's Boilerplate: Enough 1647.2.2 Do Can't and Can Nets Neural What 1647.2.1 Networks Neural 1627.2 2 System and 1 System 1617.1.2 AI Weak and Strong Skynet: the Fear Don't 1617.1.1 AI of Overview 1617.1 Intelligence Artificial and Learning Deep 1577 Queries Nesting 1566.4.4 Joins 1546.4.3 Aggregations and Groups 1536.4.2 Queries Basic 1536.4.1 Course Crash Query Database Material: Advanced 1516.4 Paradigm Map-Reduce The Material: Advanced 1516.3.6 Spark 1506.3.5.2 Technologies Data Big of Types 1496.3.5.1 Data Big 1486.3.5 Databases 1486.3.4 D3.js 1486.3.3.3 Excel 1486.3.3.2 Tableau 1476.3.3.1 Visualization 1476.3.3 Julia 1476.3.2.6 SAS 1476.3.2.5 Mathematica 1466.3.2.4 Octave and Matlab 1466.3.2.3 R 1456.3.2.2 Stack Computing Technical Python's 1456.3.2.1 Languages Computing Technical 1446.3.2 Languages Scripting 1436.3.1 Ecosystem Science Data the of Parts 1426.3 Sheet Cheat 1416.2 Code to Learning on Note A 1416.1 Tools the Knowing 1376 Q-Learning and Processes Decision Markov 1365.5.2 Algorithms Epsilon-Greedy and Bandits Multi-Armed 1355.5.1 Learning Reinforcement Go: You as Learning 1335.5 Quality Cluster Evaluating Material: Advanced 1325.4.3.4 Algorithms Clustering Other Material: Advanced 1315.4.3.3 Clustering k-means 1305.4.3.2 Clusters of Assessment Real-World 1295.4.3.1 Clustering 1295.4.3 PCA of Limitations 1285.4.2.3 Analysis Factor 1285.4.2.2 Dimensionality Understanding and Plots Scree 1255.4.2.1 Analysis Factor and Analysis Component Principal 1255.4.2 Dimensionality of Curse The 1245.4.1 Learning Unsupervised Data: the of Structure 1235.4 Nets Neural 1215.3.8 Bayes Naive 1215.3.7 Regression Lasso 1195.3.6 Regression Logistic 1165.3.5 Machines Vector Support 1165.3.4 Classifiers Ensemble 1155.3.3 Forests Random 1135.3.2 Trees Decision 1135.3.1 Classifiers Important Material: Advanced 1125.3 Curves Lift 1115.2.6 Metrics Performance Other 1105.2.5 Cutoffs Classification Selecting 1105.2.4 Curve ROC the Under Area 1085.2.3 Curves ROC 1085.2.2 Matrices Confusion 1075.2.1 Performance Measuring 1065.2 Strategies Cross-Validation 1055.1.4 Overfitting 1045.1.3 Learning Machine of Limitations the and Extraction Feature 1035.1.2 Independence Assuming and Data Labeled Getting Check: Reality 1025.1.1 Classifiers Binary and Learning, Unsupervised Learning, Supervised 1015.1 Learning Machine 955 Distribution Poisson Events: Counting 944.9.9 Distribution Weibull Failure: to Time 934.9.8 Distribution Geometric the and Distribution Exponential Around: Waiting 924.9.7 Distribution Log-Normal 101: Tails Heavy 914.9.6 Distribution Normal Curves: Bell-Shaped 914.9.5 Distribution Uniform Darts: Throwing 894.9.4 Distribution Binomial Flips: Coin Adding 894.9.3 Distribution Bernoulli Coins: Flipping 874.9.2 Continuous and Discrete Distributions: Probability 864.9.1 Knowing Worth Distributions Probability Material: Advanced 854.9 Statistics Bayesian 844.8.5 Testing Hypothesis Multiple 844.8.4.4 Test Exact Fisher's 834.8.4.3 T-test 834.8.4.2 Chi-square-Test 824.8.4.1 Knowing TestsWorth Statistical Material: Advanced 814.8.4 Intervals Confidence and Estimation Parameter Material: Advanced 804.8.3 Assumptions Modeling and Hypothesis Null a Picking Check: Reality 784.8.2 p-Value The Concept: Central The 774.8.1 Yourself Fool Not to How Statistics: 764.8 Functions Cost Choosing and Optimization 754.7.2 Outliers of Effects 724.7.1 Curve or Line a Fitting Material: Advanced 724.7 Information Mutual 714.6.2 Correlations Ordinal 714.6.1.2 Correlation Pearson 684.6.1.1 Correlations 684.6.1 Scatterplots and Correlations Numbers: Two Summarizing 674.6 Tails Heavy Managing Material: Advanced 664.5.3 Percentiles 654.5.2.2 Deviation Standard 654.5.2.1 Spread Measuring 654.5.2 Mode 644.5.1.3 Median 634.5.1.2 Mean 634.5.1.1 Tendency Central Measuring 634.5.1 Tails Heavy and Spread, Tendency, Central Assess: to Properties Key 624.5 Number One Summarizing 604.4 Causality and Correlation, Experiments, 584.3 Numbers Thousand a IsWorth Picture A Statistics: Summary of Limits the and Visualizations, Outliers, 564.2 Measure to What Choosing 554.1 Data Summarizing Story, the Telling 534 Processing Storage+Parallel 523.5.4 RDB Store+Analytics Document 523.5.3 Database Relational Shared 513.5.2 Storage Shared 503.5.1 Architectures Software Analytics Data 493.5 Operations Database 483.4.2 Stores Document and Databases Relational 473.4.1 Databases 463.4 HTML and XML 443.3.3 Files JSON 433.3.2 Files CSV 433.3.1 Formats Data 423.3 Sources and Types Data 413.2 Collection Passive and Data Unstructured 413.1 Data Modern with Working 383 Prioritization Without Questions of Lists Laundry 372.4.5 Questions Nebulous 372.4.4 Monkeys Graph as Them Using 362.4.3 Data Inadequate 362.4.2 Devs as Them Using 362.4.1 Cases Failure Management 342.4 Consultants Science Data with Advice 322.3.8 Flags Red and Hires Bad 322.3.7 Salaries Science Data 312.3.6 Checklist Hiring 282.3.5 Quality Code and Thinking, Algorithmic Programming, 282.3.4 Scientists Data Dedicated Option: Harder The 272.3.3 Scientists Data Citizen Option: Simplest The 262.3.2 Science? Data Need Even I Do 252.3.1 Scientists Data Hiring 232.3 Engineer Software 222.2.3.3 Analyst Data 222.2.3.2 Engineer Data 222.2.3.1 Roles Job Related 212.2.3 Teams Science Data and Shops One-Person 212.2.2 Analytics Batch Offline 202.2.1.4 Frameworks Analytics Building 192.2.1.3 Products Intelligent 192.2.1.2 Insights Business 192.2.1.1 Added Value of Types 192.2.1 Organization an in Science Data 182.2 Algorithms Mathematical Designing 172.1.5.4 Experts Matter Subject Replacing 172.1.5.3 Interpreted Be Can't that Data with Working 162.1.5.2 Data Without Working 152.1.5.1 Do (Necessarily) Don't Scientists Data What 152.1.5 Intelligence Business 142.1.4.3 Statistics 132.1.4.2 Learning Machine 132.1.4.1 Intelligence Business and Statistics, Learning, Machine Science, Data Terms: the Demystifying 122.1.4 Roadmap Science Data 92.1.3 Science Data of History 72.1.2 Do Scientists Data What 72.1.1 Science? Data Is What 72.1 Science Data of Side Business The 42 Book this Use to How 31.4 Development Data-Driven 21.3 Literacy Data of Age New The 11.2 Science Data About Know to Need Managers Why 11.1 Introduction 1 sobald der Vertrag zustande gekommen ist Bargeld Aus diesem Grund gebenviele Onlinehändler die Arbeit an professionelle Fachleute ab wenn Sie einen Onlineshop erstellen beschreibt eine Geschäftsabwicklung über mobile Endgeräte wie Smartphone

Verwirrt? Link zum original Text


EAN: 9781119544081
Marke: Wiley Sons,Wiley
weitere Infos: MPN: 87266893
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 74.90 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage

Shop Artikelname Preis  
Data Science: The Executive Summary - A Technical Book for Non-Technical Professionals CHF 74.90 Shop besuchen
Verwandte Produkte
Machine Learning: Hands-On for Developers and Technical Professionals
CHF 50.00

mehr Informationen

Berichten Sie über das Produkt

Introduction xxviiChapter 1 What is Machine Learning? 1History of Machine Learning 1Alan Turing 1Arthur Samuel 2Tom M. Mitchell 2Summary...

12 Simple Technical Indicators, w. DVD-ROM: That Really Work
CHF 74.90

mehr Informationen

Berichten Sie über das Produkt

From the Publisher vMeet Mark Larson ixIntroduction xiChapter 1: Technical Indicators 101 1Chapter 2: Moving Averages 11Chapter 3:...

Making Telecoms Work: From Technical Innovation to Commercial Success
CHF 89.90

mehr Informationen

Berichten Sie über das Produkt

Foreword xviiList of Acronyms and Abbreviations xixAcknowledgements xxiii1 Introduction 1Part I USER HARDWARE2 Physical Layer Connectivity...