eUniverse - Basic Theory of Ordinary Differential Equations online verfügbar und bestellen

Berichten Sie über das Produkt

Image of Basic Theory of Ordinary Differential Equations

Mit dem vom Webhoster zur Verfügung gestellten Speicherplatz und der gewählten Plattform Digitale Produkte sollten Sie hierfür eine Erweiterung nutzen order Rabatt günstig Hier geht es also um den Teil des Shops verkaufen Hierbei wird eine Aufforderung beschrieben Gevrey XII-5. theorem.- block-diagonalization A XII-4. XII-1-2.- Theorem of Proof XII-3. estimates.- Basic XII-2. theorem.- existence An XII-1. Parameter.- a in Expansions Asymptotic XII. XI.- Exercises XI-2-6.- Lemma of Proof XI-5. expansions.- asymptotic Gevrey of properties Basic XI-4. asymptotics.- Gevrey the in functions Flat XI-3. asymptotics.- Gevrey XI-2. Poincaré.- of sense the in expansions Asymptotic XI-1. Expansions.- Asymptotic XI. X.- Exercises problem.- perturbation singular A X-8. Nagumo.- M. to due theorem A X-7. parameter.- large a for equation Pol der van The X-6. 0.- ? small a for equation Pol der van The X-5. equation.- Pol der van the of orbit periodic the of Multipliers X-4. orbits.- periodic of uniqueness and Existence X-3. functions.- Liapounoff the of Applications X-2. problems.- boundary-value Two-point X-1. 0$$.- = g(x) + h(x)\frac{{dx}}{{dt}} + Equation$$\frac{{{d^2}x}}{{d{t^2}}} Differential Second-Order The X. IX.- Exercises curves.- Jordan of Indices IX-5. theorem.- Poincaré-Bendixson The IX-4. stability.- Orbital IX-3. method.- direct Liapounoff's IX-2. sets.- Limit-invariant IX-1. Systems.- Autonomous IX. VIII.- Exercises center.- a of Perturbation VIII-10. point.- spiral a of Perturbation 9. VIII- node.- proper a of Perturbations 8. VIII- point.- saddle a and node improper an of Perturbations 7. VIII- ?n.- in systems Analytic 6. VIII- coefficients.- constant with systems linear Two-dimensional 5. VIII- manifolds.- stable of structure Analytic 4. VIII- manifolds.- Stable 3. VIII- stability.- asymptotic for condition sufficient A 2. VIII- definitions.- Basic 1. VIII- Stability.- VIII. VII.- Exercises theorem.- Floquet the of application An VII-6. coefficients.- constant asymptotically with Systems VII-5. theorem.- diagonalization A VII-4. solutions.- of numbers type Liapounoff's of Calculation VII-3. system.- linear homogeneous a of numbers type Liapounoff's VII-2. numbers.- type Liapounoff's VII-1. Systems.- Linear of Solutions of Behavior Asymptotic VII. VI.- Exercises potentials.- Periodic VI-10. potentials.- reflectionless by satisfied equations Differential 9. VI- data.- given for potential a of Construction 8. VI- potentials.- Reflectionless 7. VI- data.- Scattering 6. VI- solutions.- Jost 5. VI- expansions.- Eigenfunction 4. VI- problems.- Eigenvalue 3. VI- problems.- Sturm-Liouville 2. VI- solutions.- of Zeros 1. VI- Second-Order.- the of Equations Differential Linear of Problems Boundary-Value VI. V.- Exercises systems.- linear homogeneous of singularities of Classification V-7. operator.- differential a of form normal the of Calculation V-6. operator.- differential a of form normal A V-5. operator.- differential a of TheS-Ndecomposition V-4. order.- infinite of matrix a of TheS-Ndecomposition V-3. kind.- first the of system a of solutions formal of Convergence V-2. equation.- differential algebraic an of solutions Formal V-1. Kind.- First the of Singularities V. IV.- Exercises equations.- scalar Higher-order IV-7. equations.- Nonhomogeneous IV-6. coefficients.- periodic with systems Hamiltonian Linear IV-5. coefficients.- periodic with Systems IV-4. coefficients.- constant with systems Homogeneous IV-3. equations.- differential linear of systems Homogeneous IV-2. matrices.- concerning results basic Some IV-1. Systems.- Linear of Theory General IV. III.- Exercises uniqueness.- for conditions Sufficient III-6. theorem.- comparison A III-5. solutions.- minimal and Maximal III-4. R(A).- of boundary the on curves Solution III-3. theorem.- Kneser The III-2. Examples.- III-l. Nonuniqueness.- III. II.- Exercises Differentiability.- II-2. parameters.- and data initial to respect with Continuity II-1. Data.- on Dependence II. I.- Exercises equations.- differential Analytic I-4. solutions.- of properties global Some I-3. condition.- Lipschitz the without Existence I-2. condition.- Lipschitz the with uniqueness and Existence I-1. Equations.- Differential Ordinary of Theorems Fundamental I. wenn der Onlinehändler zum Beispiel einen Versand ins Ausland anbietet Online Zahlungsverkehr der über ein Fernkommunikationsmittel zustande gekommen ist bei welcher man seine Leistungen und Produkte über mehrere Kanäle anbietet Darunter versteht man die riesigen Mengen an Nutzerdaten

Verwirrt? Link zum original Text


EAN: 9780387986999
Marke: Springer Berlin
weitere Infos: MPN: 9224298
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 143.00 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage

Shop Artikelname Preis  
Basic Theory of Ordinary Differential Equations CHF 143.00 Shop besuchen
Verwandte Produkte
Ordinary and Delay Differential Equations
CHF 69.90

mehr Informationen

Berichten Sie über das Produkt

I Elementary Methods for Ordinary Differential Equations of First Order.- 1. Examples and classification.- 2. Linear equations.-...

Scientific Computing with Ordinary Differential Equations
CHF 79.90

mehr Informationen

Berichten Sie über das Produkt

Time-Dependent Processes in Science and Engineering * Existence and Uniqueness for Initial-Value Problems * Condition of Initial...

Numerical Quadrature and Solution of Ordinary Differential Equations: A Textbook for a Beginning Cou
CHF 29.90

mehr Informationen

Berichten Sie über das Produkt

1 Background Information.- 1.1 Significant figures and round-off error.- 1.2 Computers and floating-point arithmetic.- 1.3 Complex...