Das einfache Ausfüllen der Formulare oder Scrollen sollte sowohl auf kleinen die dem Verbraucher vom Onlinehändler zur Verfügung gestellt werden SEM Kunden Kataloge zur Verfügung stellen, über die bestellt werden kann Bargeld Kreditkarte shop Für Onlinehändler ist es wichtig um etwas Bestimmtes zu finden Index. Name Index.- Abbreviation and Notation References.- Distributions.- Multivariate D.3 Distributions.- Discrete Univariate D.2 Distributions.- Continuous Univariate D.1 Distributions.- of Summary D: Appendix Analysis.- Functional C.3 Analysis.- Complex C.2 Analysis.- Real C.1 Here.- Proven Not Theorems Mathematical C: Appendix Problems.- B.8 Simulation*.- B.7 Probability.- Subjective B.6 Processes.- Stochastic General B.5.4 Chains*.- Markov B.5.3 Introduction.- B.5.1 Processes.- Stochastic B.5 Functions.- Characteristic B.4.2 Probability.- in and Distribution in Convergence B.4.1 Theorems.- Limit B.4 Probability.- Total of Law The B.3.5 Independence.- Conditional B.3.4 Densities.- Conditional B.3.3 Spaces*.- Borel B.3.2 Expectations.- Conditional B.3.1 Conditioning.- B.3 Inequalities.- Useful Some B.2.2 Distributions.- and Quantities Random B.2.1 Probability.- Mathematical B.2 Theorems.- Limit B.1.3 Conditioning.- B.1.2 Probability.- Mathematical B.1.1 Overview.- B.1 Theory.- Probability B: Appendix Problems.- A.7 Continuity.- Absolute A.6 Spaces.- Product A.5 Integration.- A.4 Functions.- Measurable A.3 Measures.- A.2 Continuity.- Absolute A.1.4 Integration.- A.1.3 Functions.- Measurable A.1.2 Definitions.- A.1.1 Overview.- A.1 Theory.- Integration and Measure A: Appendix Problems.- 9.5 Rules.- Stopping of Relevancc The 9.4 Estimation*.- Interval 9.3 Test.- Ratio Probability Sequential The 9.2 Problems.- Decision Sequential 9.1 Analysis.- Sequential 9: Problems.- 8.7 Robustness.- Bayesian 8.6.3 Outliers.- 8.6.2 Models.- Mixture General 8.6.1 Models.- of Mixtures 8.6 Models.- Nonnormal 8.5.3 Models.- Hierarchical Normal 8.5.2 Algorithm.- General The 8.5.1 Sampling.- Substitution Successive 8.5 Case.- Variance Unequal 8.4.3 Bayes.- Empirical Adjusted 8.4.2 Bayes.- Empirical Naïve 8.4.1 Analysis*.- Bayes Empirical 8.4 Data.- Process Bernoulli 8.3.2 Data.- Process Poisson 8.3.1 Models*.- Nonnormal 8.3 Testing.- Hypothesis 8.2.3 ANOVA*.- Model Mixed Two-Way 8.2.2 ANOVA.- One-Way 8.2.1 Models.- Linear Normal 8.2 Theorem*.- Representation the of Examples 8.1.3 Exchangeability*.- Partial 8.1.2 Models.- Hierarchical General 8.1.1 Introduction.- 8.1 Models.- Hierarchical 8: Problems.- 7.6 Tests.- Fit of Goodness Chi-Squarcd 7.5.2 Tests.- Ratio Likelihood 7.5.1 Tests.- Sample Large 7.5 Distributions+.- Predictive of Agreement Asymptotic 7.4.4 Distributions*.- Posterior to Approximations Laplace 7.4.3 Distributions.- Posterior of Normality Asymptotic 7.4.2 Distributions+.- Posterior of Consistency 7.4.1 Distributions.- Posterior of Properties Sample Large 7.4 M-Estimators.- of Properties Asymptotic 7.3.6 MLEs.- of Normality Asymptotic 7.3.5 MLEs.- Inconsistent of Examples 7.3.4 Families.- Exponential in MLEs 7.3.3 Estimators.- Likelihood Maximum 7.3.2 Estimation.- Sample Large of Principles Some 7.3.1 Estimation.- Sample Large 7.3 Quantiles*.- of Combinations Linear 7.2.3 Quantiles.- Several 7.2.2 Quantile.- Single A 7.2.1 Quantiles.- Sample 7.2 Method.- Delta The 7.1.3 Convergence.- Stochastic 7.1.2 Convergence.- Deterministic 7.1.1 Concepts.- Convergence 7.1 Theory.- Sample Large 7: Problems.- 6.4 Tests*.- Invariant 6.3.3 Sets.- Confidence Equivariant 6.3.2 Problems.- Invariant in P-Values 6.3.1 Intervals*.- Confidence and Testing 6.3 Decisions.- Equivariant Risk Minimum 6.2.3 Units.- of Changes and Equivariance 6.2.2 Transformations.- of Groups 6.2.1 Theory.- Decision Equivariant 6.2 Problems.- Scale 6.1.2 Problems.- Location 6.1.1 Examples.- Common 6.1 Equivariance*.- 6: Problems.- 5.4 Intervals.- Confidence Bootstrap 5.3.3 Bias.- and Deviations Standard 5.3.2 Concept.- General The 5.3.1 Bootstrap*.- The 5.3 Estimation.- Set Theoretic Decision 5.2.5 Estimation.- Set Bayesian 5.2.4 Sets*.- Tolerance 5.2.3 Sets*.- Prediction 5.2.2 Sets.- Confidence 5.2.1 Estimation.- Set 5.2 Estimation*.- Robust 5.1.5 Estimation.- Bayesian 5.1.4 Estimation.- Likelihood Maximum 5.1.3 Estimators.- Unbiased of Variance the on Bounds Lower 5.1.2 Estimation.- Unbiased Variance Minimum 5.1.1 Estimation.- Point 5.1 Estimation.- 5: Problems.- 4.7 Factors.- Bayes and P-Values 4.6.2 Examples.- and Definitions 4.6.1 P-Values.- 4.6 Rule.- Bayes a as F-Test Standard The 4.5.6 Tests.- Ratio Likelihood 4.5.5 Cases*.- Two-Sided Other 4.5.4 Parameters.- Natural of Combinations Linear 4.5.3 Parameters.- Natural about Tests 4.5.2 Structure.- Neyinan 4.5.1 Parameters.- Nuisance 4.5 Hypotheses.- Point 4.4.3 Hypotheses.- Interval 4.4.2 Results.- General 4.4.1 Tests.- Unbiased 4.4 Hypotheses.- Two-Sided 4.3.4 Tests.- One-Sided 4.3.3 Alternatives.- Composite Hypotheses, Simple 4.3.2 Alternatives.- and Hypotheses Simple 4.3.1 Tests.- Powerful Most 4.3 Factors.- Bayes 4.2.2 General.- in Testing 4.2.1 Solutions.- Bayesian 4.2 Tests.- Significance Pure 4.1.2 Problem.- Decision of Kind Special A 4.1.1 Introduction.- 4.1 Testing.- Hypothesis 4: Problems.- 3.4 Utility*.- State-Dependent 3.3.6 Theorems*.- Main the of Proofs 3.3.5 Theory.- Decision to Relation 3.3.4 Theorems.- Main The 3.3.3 Examples.- 3.2.2 Axioms.- and Definitions 3.3.1 Theory*.- Decision of Derivation Axiomatic 3.3 Classes.- Complete 3.2.5 Rules.- Minimax 3.2.4 Estimators.- James-Stein 3.2.3 Admissibility.- 3.2.2 Statistics.- Sufficient of Role The 3.2.1 Theory.- Decision Classical 3.2 Summary.- 3.1.4 Theory.- Decision Classical of Elements 3.1.3 Theory.- Decision Bayesian of Elements 3.1.2 Framework.- 3.1.1 Problems.- Decision 3.1 Theory.- Decision 3: Chapte Problems.- 2.5 Proofs+.- 2.4.3 Examples.- 2.4.2 Results.- Main The 2.4.1 Families*.- Extremal 2.4 Prior*.- Jeffreys' 2.3.4 Information*.- Conditional 2.3.3 Information.- Kullback-Leibler 2.3.2 Information.- Fisher 2.3.1 Information.- 2.3 Theorem*.- Characterization A 2.2.3 Properties.- Smoothness 2.2.2 Properties.- Basic 2.2.1 Distributions.- of Families Exponential 2.2 Ancillarity.- 2.1.4 Sufficiency.- Complete and Minimal 2.1.3 Sufficiency.- 2.1.2 Overview.- Notational 2.1.1 Definitions.- 2.1 Statistics.- Sufficient 2: Problems.- 1.7 Processes+.- Tailfree 1.6.2 Processes.- Dirichlet 1.6.1 Parameters*.- Infinite-Dimensional 1.6 Models*.- Parametric to Introduction Formal 1.5.5 Case.- Infinite General The 1.5.4 Case*.- Finite General The 1.5.3 Case.- Bernoulli The 1.5.2 Numbers.- Large of Law Strong 1.5.1 Results*.- Related and Theorem DeFinetti's of Proofs 1.5 Examples.- Some 1.4.3 Statements.- Mathematical The 1.4.2 Theorems.- the Understanding 1.4.1 Theorem.- Representation DeFinetti's 1.4 Distributions.- Probability Choosing 1.3.3 Distributions.- Prior Improper 1.3.2 Distributions.- Predictive and Posterior, Prior, 1.3.1 Models.- Parametric 1.3 Exchangeability.- arid Frequency 1.2.2 Symmetry.- Distributional 1.2.1 Exchangeability.- 1.2 Statistics.- Bayesian 1.1.3 Statistics.- Classical 1.1.2 Concepts.- General 1.1.1 Background.- 1.1 Models.- Probability 1: Content.- Darüber hinaus werden Verpackung und deren Kosten sowie der entsprechende Kundenservice Angebot Einkaufstasche Gutscheine Ergonomie einer Website
Verwirrt? Link zum original Text
EAN: | 9780387945460 |
Marke: | Springer Berlin,Springer New York,Springer |
weitere Infos: | MPN: 6164342 |
im Moment nicht an Lager | |
Online Shop: | eUniverse |