eUniverse - Machine Learning: A Practical Approach on the Statistical Learning Theory online verfügbar und bestellen

Alle Preise anzeigen

Image of Machine Learning: A Practical Approach on the Statistical Learning Theory

Welcher Begriff gehört für Sie noch in unsere Liste? Ein gutes Webhosting Angebot ist flexibel und wächst im besten Fall mit Ihrem Shop mit Der Umsatz der Onlinehändler stieg in den letzten Jahren rapide an Tiefpreis Schlange Für die Suchmaschinenoptimierung spielen Metadaten eine wesentliche Rolle Die Logistik umfasst den Bereich des eCommerce die Onlineshops anbieten können die Echtheit der Kreditkarte bestätigt zu bekommen   Conclusions 6.8                 theorem Mercer's the on note quick A 6.7                 trick Kernel SVM 6.6                 Problems Practical using Kernels Assessing 6.5                 (KPCA) Analysis Component Principal Kernel 6.4                 (PCA) Analysis Component Principal 6.3                 Eigenvectors and Eigenvalues 6.2.6                                 basis orthonormal and basis of Change 6.2.5                                 products Dot 6.2.4                                 Transformations Linear of Inverses 6.2.3                                 transformation Linear 6.2.2                                 Basis 6.2.1                                 Algebra Linear 6.2                 kernels with examples Practical 6.1.4                                 Kernel Sigmoidal The 6.1.3                                 kernel Function Basis Radial The 6.1.2                                 kernel Polynomial The 6.1.1                                 examples and kernels typical Definitions, 6.1                 Kernels on Introduction Brief A - 6 Chapter Remarks Concluding 5.5                 LowRankQP package using problem optimization SVM the Solving 5.4.5                                 problem optimization SVM the solve to Method Point Interior the Implementing 5.4.4                                 problem optimization first our solve to Method Point Interior the Implementing 5.4.3                                 Method Point Interior Following Path Primal-Dual The 5.4.2                                 Methods Point Interior 5.4.1                                 problems optimization Convex 5.4                 conditions KKT the of interpretation Graphical 5.3.4.2                                                 rules the Applying 5.3.4.1                                                 problems linear for conditions KKT the On 5.3.4                                 problems linear solve to approach algorithmic an Using 5.3.3                                 multipliers Lagrange Using 5.3.2.3                                                 forms dual and primal of interpretation Graphical 5.3.2.2                                                 rules and table the Using 5.3.2.1                                                 problems linear of forms dual and Primal 5.3.2                                 graphing through Solving 5.3.1                                 problems optimization Linear 5.3                 problems optimization of types Main 5.2                 problem? optimization an is What 5.1                 Algorithm Optimization the for Search In - 5 Chapter Remarks Concluding 4.6                 problem optimization SVM soft-margin the Formulating 4.5                 problem optimization SVM hard-margin the Formulating 4.4                 conditions Karush-Kuhn-Tucker 4.3.2                                 multipliers Lagrange 4.3.1                                 view algebraic an classification: Hyperplane-based 4.3                 view intuitive an classification: Hyperplane-based 4.2                 algorithm classification a build to Algebra basic Using 4.1                 Machines Vector Support to Introduction - 4 Chapter Remarks Concluding 3.6                 Algorithms Classification of Biases the of Study Empirical 3.5                 Bound Generalization SVM the Using 3.4                 Bound Generalization the Using 3.3                 bound Chernoff the Using 3.2                 Theory Learning Statistical the of concepts the Mapping 3.1                 Algorithms Learning Assessing - 3 Chapter Remarks Concluding 2.7                 bounds Margin 2.6.1                                 dimension Vapnik-Chervonenkis The 2.6                 bounds Generalization 2.5                 functions infinite for consistent Principle ERM the Making 2.4.2                                 measure capacity a as coefficient Shattering 2.4.1                                 coefficient shattering the and lemma Symmetrization 2.4                 practice in convergence uniform Ensuring 2.3.3                                 functions admissible of space the of Restriction 2.3.2                                 Principle ERM the and Consistency 2.3.1                                 Principle Minimization Risk Empirical 2.3                 algorithms classification of Bias 2.2.8                                 underfitting and overfitting Consistency, 2.2.7                                 consistency universal and risk Bayes 2.2.6                                 example practical a with generalization for Bounds 2.2.5                                 generalization and risk Expected 2.2.4                                 Theory Learning Statistical the by considered Assumptions 2.2.3                                 data distributed independently and Identically 2.2.2                                 probabilities joint and densities Probability 2.2.1                                 concepts Basic 2.2                 Motivation 2.1                 Theory Learning Statistical - 2 Chapter Remarks   Concluding 1.6                 Perceptron Multilayer 1.5.2                                 Perceptron The 1.51.                                 Learning Supervised the Illustrating 1.5                 learns? algorithm supervised a How 1.4                 learning Supervised 1.3                 learning of types Main 1.2                 definition Learning Machine 1.1                 Learning Machine on Review Brief A - 1 Chapter Im Omnichannel Marketing werden mehrere Kommunikationskanäle genutzt shop Mit dem vom Webhoster zur Verfügung gestellten Speicherplatz und der gewählten Plattform billig Sie sollten natürlich nicht alle Verfahren dieser Welt anbieten. Jedoch sollten die Gängigen abgedeckt werden

Verwirrt? Link zum original Text


EAN: 9783030069490
Marke: Springer Berlin,Springer International Publishing,Springer
weitere Infos: MPN: 79185801
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 74.90 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage