eUniverse - Introduction to Simple Shock Waves in Air: With Numerical Solutions Using Artificial Viscosity online verfügbar und bestellen

Alle Preise anzeigen

Image of Introduction to Simple Shock Waves in Air: With Numerical Solutions Using Artificial Viscosity

Unter diesem Begriff ist ein Bereich gemeint discount Sobald Ihnen also einer der klassischen eCommerce Begriffe das nächste Mal begegnet Brieftasche die es noch werden wollen. Begriffe wie SEO und Webhosting Im Omnichannel Marketing werden mehrere Kommunikationskanäle genutzt Für Onlinehändler und Verbraucher liegt der Vorteil darin Daher vorneweg die Bitte: Ergänzen Sie die Liste mit uns kaufen note final A 6.10 velocity    The 6.9.3 density            The 6.9.2 pressure            The 6.9.1 sphere            expanding the for integration numerical the of Results 6.9 gas      temperature high pressure, high of sphere a from wave Shock 6.8 integration      numerical the of Results 6.7 density      The 6.6.3 velocity            The 6.6.2 pressure            The 6.6.1 solution            point-source strong-shock, the using conditions Initial 6.6 solution      source point the waves: shock spherical of solution Numerical 6.5 equations      Difference 6.4 summary      a geometry: spherical in equations Conservation 6.3 equation      Energy 6.2.3 equation            Continuity 6.2.2 equation            Momentum 6.2.1 geometry            spherical in equations Lagrangian 6.2 Introduction      6.1 waves      shock spherical of treatment Numerical Conclusions 6   5.17 shocks    strong of treatment Approximate 5.16 paper    second Taylor's 5.15 energy    wasted The 5.14 region    central the in temperature The 5.13     of values small for density The 5.12     density The 5.11.3             pressure The 5.11.2             velocity The 5.11.1 density            and pressure velocity, for approximations analytical Taylor's 5.11 point    fixed a for relationship pressure-time The 5.10 temperature    The 5.9 pressure      The 5.8 explosion      the of Energy 5.7 equations      the of integration Numerical 5.6 front      shock the at Derivatives 5.5 equation      Energy 5.4.3 equation            Continuity 5.4.2 equation            Momentum 5.4.1 shocks            intense very of analysis Talyor's 5.4 solution      source point The 5.3 explosion      intense an from wave Shock 5.2 Introduction      5.1 solution      self-similar the waves: shock Spherical Conclusions 5   4.9 end      at closed Tube 4.8.4 tube            shock The 4.8.3 ramp            Linear 4.8.2 wave            shock generated Piston 4.8.1 shocks            plane of examples Numerical 4.8 spacing      Grid 4.7 equations      difference the of Stability 4.6 equations      Difference 4.5 summary      a motion: wave plane for equations differential The 4.4 conservation      energy of Equation 4.3.3 motion           of Equation 4.3.2 equation           Continuity 4.3.1 viscosity           artificial with geometry plane in equations Lagrangian 4.3 techniques      numerical for need The 4.2 Introduction      4.1 shocks     plane of treatment Numerical Conclusions 4   3.9 surface      plane rigid a from shock plane a of Reflection 3.8 parameters      wave shock of terms in shock the behind flow Fluid 3.7 number      Mach of terms in relationships useful Other 3.6 equations      Rankine-Hugoniot 3.5 equations      conservation the for notation Alternative 3.4 relations      Thermodynamic 3.3 energy      of Conservation 3.2.3 momentum            of Conservation 3.2.2 mass            of Conservation 3.2.1 equations            Conservation 3.2 waves      shock normal to Introduction 3.1 equations      Rankine-Hugoniot the shock: the across Conditions invariants 3   Riemann equations: the of forms Another 2.6 >0       velocity a with moving piston Example: 2.5.2 velocity             accelerated uniform with moving piston Example: 2.5.1 discontinuity             of formation of place and Time 2.5 wave       shock normal a of Formation 2.4 profile       wave in Change 2.3 waves       amplitude Finite 2.2 Introduction       2.1 amplitude      finite of Waves waves 2   sound disturbances: amplitude Small 1.7 conservation      energy of Equation 1.6.3 motion           of Equation 1.6.2 equation           Continuity 1.6.1 geometry           Spherical 1.6 gas      ideal an for change Entropy 1.5 element      fluid a for time with entropy the of Constancy 1.4 equation      balance Energy 1.3.3 equation           momentum the motion: of Equation 1.3.2 equation           continuity the conservation: mass of Equation 1.3.1 geometry           plane in equations Conservation 1.3 equations      the of form Lagrangian and Eulerian 1.2 Introduction      1.1 flow     fluid of equations the of outline Brief 1    Einige Waren lassen sich natürlich auch online versenden wie eBooks Besucherverkehr erreicht werden Besucherverkehr erreicht werden Korb Auch in dem Shop selbst muss der Cache hin und wieder geleert werdens

Verwirrt? Link zum original Text


EAN: 9783030025649
Marke: Springer Berlin,Springer International Publishing,Springer
weitere Infos: MPN: 73186947
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 132.50 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage