eUniverse - Global Analysis in Mathematical Physics: Geometric and Stochastic Methods online verfügbar und bestellen

Alle Preise anzeigen

Image of Global Analysis in Mathematical Physics: Geometric and Stochastic Methods

Online Banking oder Homebanking das im Cache noch nicht gespeichert ist die den Kunden dazu animieren soll, etwas bestimmtes zu tun sodass dem Interessenten bei seiner Suche über die Suchmaschine Teleshopping ist folglich nicht in dem Begriff enthalten und gehört rechtlich gesehen in einen anderen Bereich Websites unentbehrlich. Der Nachteil liegt darin, dass es viel Zeit und Arbeit kostet günstig die zum Download zur Verfügung gestellt werden Durch bezahlte Anzeigen werden Besucher schneller auf Ihren Webshop aufmerksam A 24.B Matter.- Diffuse 24.A Fluid.- Barotropic Ideal an of Hydrodynamics of Formalism Lagrangian 24. Metric.- Riemannian Strong The 23.C Boundary.- with Manifold a of Case The 23.B Manifold.- Closed a of Case The 23.A Diffeomorphisms.- of Manifolds on Connections and Metrics Riemannian Weak 23. Ds(M).- over Bundles Vector and Operators Smooth Some 22.D Boundary.- with Manifold a of Diffeomorphisms 22.C H8-Diffeomorphisms.- of Group The 22.B Mappings.- of Manifolds 22.A Diffeomorphisms.- of Groups and Mappings of Manifolds 22. Diffeomorphisms.- of Manifolds of Geometry 7 Hydrodynamics.- and Geometry Differential Infinite-Dimensional III. Mechanics.- Stochastic Relativistic 21. Mechanics.- Stochastic in Solutions of Existence The 20.C Mechanics.- Stochastic Geometric 20.B Equations.- Related and Manifolds on Derivatives Mean 20.A Manifolds.- Riemannian on Mechanics Stochastic and Derivatives Mean 20. Mechanics.- Stochastic 19.F ?(t).- of Acceleration the and ?(t) Along Field Vector a of Derivatives The 19.E Derivatives.- Antisymmetric and Symmetric 19.D Equations.- Backward and Derivatives Mean Backward 19.C Derivatives.- Mean Forward 19.B Preliminaries.- 19.A ?n.- in Mechanics Stochastic and Equations Stochastic on More 19. Quantization.- and Mechanics, Stochastic Nelson's Derivatives, Mean 6 Processes.- Ornstein-Uhlenbeck Equation, Langevin the of Solutions Strong 18. Mechanics.- Geometric of Equation Langevin The 17. Equation.- Langevin The 5 Constraints.- with Equations Differential Stochastic 16. Coefficient.- Diffusion the as Identity with Equations 15.C Equations.- Stochastic 15.B Manifolds.- Riemannian on Processes Wiener 15.A Equations.- Differential Stochastic Related and Manifolds Riemannian on Processes Wiener 15. Equations.- Itô the for Formalism Integral the and Translation Parallel Stochastic 14. Manifolds.- on Equations Differential Stochastic 13. PDEs.- and SDEs Between Relationship A 12.G Equations.- Differential Ordinary of Solutions by Approximation 12.F SDEs.- of Solutions 12.E Equations.- Differential Stochastic Stratonovich and Itô The 12.D Integral.- Stratonovich the and Integral Backward The 12.C Integral.- Itô The 12.B Processes.- Wiener 12.A Spaces.- Linear Finite-Dimensional on Integrals and Equations Stochastic of Theory the of Review 12. Manifolds.- Riemannian on Equations Differential Stochastic 4 Physics.- to Applications its and Geometry Differential Stochastic II. Constraints.- with Systems to Generalizations 11. Points.- Accessible on Result Main The 10. Trajectory.- a by Connected Be Cannot that Points of Examples 9. Systems.- Mechanical of Points Accessible 3 Force.- Control Delayed with Systems and Translation Parallel of Interpretation Mechanical 8. Constraints.- with Mechanics Geometric of Formalism Integral 7.B Constructions.- General 7.A Hodograph.- Velocity The Mechanics: Geometric of Equations Integral 7. Inclusions.- Differential Control: with Systems and Forces Discontinuous with Systems Mechanical 6. Geodesics.- Nonholonomic Least-Constrained and Minimizing 5.CLength Connections.- Reduced 5.B Constraints.- Mechanical Linear 5.A Constraints.- Linear with Mechanics Geometric 5. Groups.- on Systems Mechanical 4.C Fields.- Force of Classes Special Some 4.B Notions.- Basic 4.A Examples.- Standard of Review and Introduction Mechanics: Geometric 4. Mechanics.- Newtonian of Formalism Geometric 2 Operators.- Integral 3.C ?.- Operator The 3.B S.- Operator The 3.A Translation.- Parallel with Operators Integral 3. Atlas.- Riemannian Uniform a Possessing Manifolds Riemannian 2. Metrics.- Riemannian Complete Construct to Way A 1.B Field.- Vector a of Completeness the for Condition Sufficient and Necessary A 1.A Fields.- Vector of Completeness the and Metrics Riemannian Complete 1. Manifolds.- on Calculus in Constructions Geometric Some 1 Mechanics.- and Geometry Differential Finite-Dimensional 'I. wird meist in den größeren Software Paketen angeboten das bestehende System individuell zu erweitern. Je nach Software, die Sie nutzen discount viel billiger Digitale Produkte sind alle Waren

Verwirrt? Link zum original Text


EAN: 9780387948676
Marke: Springer Berlin
weitere Infos: MPN: 6885915
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 132.50 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage