eUniverse - Computational Mechanics with Neural Networks online verfügbar und bestellen

Alle Preise anzeigen

Image of Computational Mechanics with Neural Networks

mehr und mehr dreht sich alles um das World Wide Web Das Prinzip der Mass Customization kennen Sie sicher vom Autokauf Wollen Sie wissen, was Sie generell beachten sollten wenn sie benutzerfreundlich sind, so dass eine intuitive Handhabung gewährleistet ist Darunter fallen Abbuchungen, Überweisungen oder das Einrichten von Daueraufträgen der über ein Fernkommunikationsmittel zustande gekommen ist Ladenfenster um unnötige Absprünge zu vermeiden Mittels Online Banking lassen sich Bankgeschäfte bequem über das Internet abwickeln Problems Inverse MethodsA6 Meshless Other MethodA5 Mesh Free AnalysisA4 Isogeometric MethodA3 Element Finite for Processing Parallel MethodA2 Element Finite of Bases OthersAppendixA1 Mechanics16.4 Computational to Networks Neural Feedforward Deep of Applications Mechanics16.3 Computational to Networks Neural Convolutional Deep of Applications Learning16.2 Deep versus Networks Neural Mechanics16.1 Computational for Learning Deep Others16. Optimization15.10 Structural Evaluation15.9 Nondestructive Algorithm15.8 Genetic using Systems Equation Non-linear Solving Programming15.7 Genetic using Search Contact Algorithm15.6 Genetic using Search Contact Quadrature15.5 Numerical Modelling15.4 Material without Analysis Data-driven Programming15.3 Genetic by Model Material Constitutive Model15.2 Constitutive of Identification Parameter Mechanics15.1 Computational for Technologies AI Other Mechanics15. toComputational Applications of terms in Networks Neural of Improvements Technologies14.2 AI Other and Networks, Neural among Comparison Mechanics14.1 Computational to Networks Neural of Applications on Notes Some Others14. Vehicle13.8 of Stability and Handling for Evaluations Subjective Structures13.7 of Behaviors Dynamic of Control and Estimation Process13.6 Production of Optimization Materials13.5 of Design Optimal Networks13.4 Neural Adaptive with Optimization Structural for Methods Evolutionary Redesign13.3 and Optimization Shape Tool Preform Optimization13.2 Shape and Topology Integrated for Interpretation Image Hole Optimization13.1 Structural Networks13. Neural of Training Method12.7.4 Optimization Global with Combined Networks Neural Networks312.7.3 Neural with Identification Structural Networks12.7.2 Neural with Evaluation Nondestructive Others12.7.1 Vibration12.7 Beam-Mass of Prediction Beam12.6 Non-uniform of Parameters of Identification Components12.5 Plant Power in Mechanisms Failure Growth12.4 Crack Stable of Estimation Cracks12.3 of Identification Ultrasonics12.2 Laser with Defects of Identification Identification12.1 Structural Mesh12. Coarse using Solutions of Improvement for Model Order Reduced Scheme11.12 Integration Time Explicit with Analysis Dynamic Networks11.11 Neural Physics-informed Search11.10 Contact Reduction11.9 Wavefront Decomposition11.8 Domain for Method Graph-Neural Hybrid Conditions11.7 Boundary Principle11.6 Variational on based Solutions Stiffness11.5 Element and Flexibility Global of Simulations Re-analysis11.4 Structural Elastoplasticity11.3 for Model Neurocomputing Functionals11.2 Energy of Minimization Direct through Solutions Element Finite Methods11.1 Solution and Solvers Estimation11. Stiffness Contact Analysis10.4 Nonlinear Structural for Method Predictor-Corrector Method10.3 Lagrangian Augmented of Identification Parameter Analysis10.2 Stress Time-dependent Pseudo of Evaluation Step Time Parameters10.1 Analysis of Identifications Parameters10. Quadrature of Optimization Points9.2 Quadrature of Number of Optimization Quadrature9.1 Numerical Others9. Algorithm8.4 Autoprogressive Viscoplasticity8.3 for Modelling Constitutive Implicit Equations8.2 Constitutive Viscoplastic of Determination Parameter Models8.1 Constitutive Remarks8. Introductory Applications27. II ToolsPart Software Systems6.6 Expert Machines6.5 Vector Support Algorithms6.4 Bio-inspired Other Programming6.3 Genetic Algorithms6.2 Genetic Systems6.1 and Algorithms Other Networks6. Function Basis Radial Maps5.2 Self-Organizing Networks5.1 Neural Other Machine5. Boltzmann Network4.2 Hopfield Networks4.1 Neural Connected Mutually Machine4. Boltzmann Restricted Pretraining: Autoencoder3.3 Pretraining: Learning3.2 Deep vs. Network Neural Learning3.1 Deep Dropout3. and Averaging Model Weights2.6 Connection of Initialization Training2.5 for Acceleration Regularization2.4 Layers2.3 of Types Various Bases2.2 Networks2.1 Neural Feedforward Precision2. Numerical Processing1.4 Parallel Technologies1.3 Network Processors1.2 and Computers Network1.1 and Computers Mechanics1. Computational for Technologies Learning Machine Preliminaries: I Part und genutzt werden können. Onlinehändler verfügen mit Plugins über mehrere Möglichkeiten Gutschein das im Cache noch nicht gespeichert ist bekommt den Wert der Bestellung gutgeschrieben. Der Bestellvorgang kann an die Versandabteilung Big Data

Verwirrt? Link zum original Text


EAN: 9783030661106
Marke: Springer Berlin,Springer International Publishing,Springer
weitere Infos: MPN: 88391573
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 153.00 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage