Kleingeld Kunde Call to Actions sind im Grunde für alle Varianten des öffentlichen Auftritts Zudem werden durch Paketdienste unterschiedliche Preise veranschlagt Plugins sind zusätzliche Softwareerweiterungen möglichst die für ihn relevanten Seiten angezeigt werden und diese der sich offline abspielt. Warentransport für Endkunden aber auch Bestellungen vom Großhandel Bei der Erstellung sollten entsprechende Regeln unbedingt eingehalten werden Das wesentliche daran ist (12.40) and (12.37) in Controllers F.4.1 14.8(a) fig. in Controller F.4 compensator Lead F.3 differentiation Numerical F.2 integral of computation Numerical F.1 controllers of implementation Numerical F constraints to submitted equations Euler-Lagrange E marks polarity Coil D.2 Invertance D.1 coils coupled Magnetically D dB Decibels, C zero order second A B.1.6 function transfer order second A B.1.5 zero order first A B.1.4 pole order first A B.1.3 integrator An B.1.2 differentiator A B.1.1 terms order First B.1 diagrams Bode B transform Laplace A.3 transform Fourier A.2 series Fourier A.1 transforms Laplace and Fourier Appendices A results Experimental 16.7 implementation Controller 16.6 identification parameter and construction Prototype 16.5 controller Balancing 16.4 control nonlinear up Swing 16.3 model Mathematical 16.2 description pendulum wheel Inertia 16.1 pendulum wheel inertia an of Control 16. program C microcontroller PIC16F877A The 15.11 program C++ 6 Builder The 15.10 selection period Sampling 15.9 construction system Control 15.8 tests Experimental 15.7 controller stabilizing a of Design 15.6 identification Parameter 15.5 model based flatness differential A 15.4 model approximate Linear 15.3 pendulum the up swing to controller A 15.2 model Mathematical 15.1 pendulum Furuta a of Control 15. programming microcontroller PIC16F877A 14.9.4 results Experimental 14.9.3 design Controller 14.9.2 construction Prototype 14.9.1 microcontroller PIC16F877A a on based Control 14.9 PIC16F877A microcontroller program to used code C PIC 14.8 algorithms control implement to used code C++ 6 Builder 14.7 diagram electric system Control 14.6 results Experimental 14.5 design Controller 14.4 dynamics Ball 14.3.2 subsystem Motor-beam 14.3.1 identification Parameter 14.3 system measurement th angle Beam 14.2.2 system measurement x position Ball 14.2.1 construction Prototype 14.2 model approximate Linear 14.1.2 model Nonlinear 14.1.1 model Mathematical 14.1 system beam and ball a of Control 14. controller current electric PI the design to procedure alternative An 13.6.7 tests experimental other Some 13.6.6 response frequency the using controller position PID the of Design 13.6.5 amplifier power PWM 13.6.4 tests experimental Some 13.6.3 controller current electric PI the of Design 13.6.2 locus root using design controller position PID 13.6.1 design Controller 13.6 loop position External 13.5.2 loop current Internal 13.5.1 structure system Control 13.5 m mass, Ball 13.4.4 As gain, sensor Position 13.4.3 L(y) inductance, Electromagnet 13.4.2 R resistance, internal Electromagnet 13.4.1 parameters model of identification Experimental 13.4 amplifier Power 13.3.6 loop current Electric 13.3.5 Controller 13.3.4 sensor Position 13.3.3 Electromagnet 13.3.2 Ball 13.3.1 construction prototype Experimental 13.3 approximation Linear 13.2.2 model representation variables state A 13.2.1 model linear Approximate 13.2 model mathematical nonlinear Complete 13.1 system levitation magnetic a of Control 13. program C++ Builder computer Personal 12.6 program C PIC16F877A Microcontroller 12.5 construction prototype Experimental 12.4 th2 of control Direct 12.3.2 control Multi-loop 12.3.1 design Controller 12.3 Identification Experimental 12.2 model Mathematical 12.1 flexibility with servomechanism a of Control 12. construction Prototype 11.8.3 design control Proportional-integral-derivative 11.8.2 identification Model 11.8.1 design response-based Frequency 11.8 control computer-based Personal 11.7 programming PIC16F877A Microcontroller 11.6 construction Prototype 11.5 tracking Trajectory 11.4 controller PID classical A 11.3.3 controller two-degrees-of-freedom A 11.3.2 controller PID modified A 11.3.1 disturbances external of effect under Control 11.3 lead-compensator A 11.2.2 feedback velocity with control position Proportional 11.2.1 0) = (Tp present not are disturbances when control Position 11.2 Identification 11.1 motor DC Brushed PM a of control Position 11. construction Prototype 10.9.3 design control Proportional-integral 10.9.2 identification Model 10.9.1 design response-based Frequency 10.9 programming PIC16F877A Microcontrolller 10.8 results Experimental 10.7 amplifier Power 10.6.2 control current Electric 10.6.1 prototype Experimental 10.6 controller two-degrees-of-freedom A 10.5.2 controller PI modified A 10.5.1 control Velocity 10.5 Identification 10.4 control current Electric 10.3 amplifier Power 10.2 model Mathematical 10.1 motor DC Brushed PM a of control Velocity 10. receiver (RF) radio-frequency regenerative A 9.4 design transistor-based A 9.3.3 oscillator shift Phase amplifier. operational an on based Design 9.3.2 oscillator bridge Wien amplifier. operational an on based Design 9.3.1 oscillators waveform sinusoidal of Design 9.3 amplifiers operational with controllers Analogue 9.2 amplifiers in reduction zone Dead 9.1.2 amplifiers in distortion Reducing 9.1.1 circuits electronic in nonlinearities of effects Reducing 9.1 circuits electronic Feedback 9. plants unstable controlling when limitations some and function sensitivity The 8.4 example application An 8.3.4 [4] [3], nonlinearity saturation The 8.3.3 example application An 8.3.2 [4] [3], nonlinearity zone dead The 8.3.1 analysis function Describing 8.3 flatness Differential 8.2 origin of out located zeros and poles Open-loop 8.1.2 origin at poles Open-loop 8.1.1 control classical in limitations Structural 8.1 control in topics Advanced 8. Exercises 7.14 control feedback State 7.13.2 (7.57) in forms Obtaining 7.13.1 pendulum wheel inertial The study. of Case 7.13 principle separation The 7.12 observers State 7.11 control feedback State 7.10 equations dynamical Equivalent 7.9 function transfer a of realization A 7.8 equation dynamical a of function Transfer 7.7 Observability 7.6.2 Controllability 7.6.1 observability and Controllability 7.6 equation dynamical a of Stability 7.5 equation dynamical invariant time linear a of Solution 7.4 algebra linear from results Some 7.3 inputs of number arbitrary with equations state order arbitrary for procedure General 7.2.2 input without equations state order first for Procedure 7.2.1 equations state nonlinear of linearization Approximate 7.2 variables state of Definition 7.1 approach variables state The 7. Exercises 6.9 plant unstable an of control PID study. of Case 6.8 motor DC a of control velocity PI 6.7.6 motor DC a of control position PID 6.7.5 motor DC a for redesign control position PD 6.7.4 motor DC a of control position PD 6.7.3 system beam and ball A 6.7.2 system phase nonminimum a of Analysis 6.7.1 examples design and Analysis 6.7 response time closed-loop and response frequency Open-loop 6.6.2 response time closed-loop and response frequency Closed-loop 6.6.1 response time and response frequency between Relationship 6.6 margins Stability 6.5 case general The criterion. Nyquist 6.4.5 case special A criterion. Nyquist 6.4.4 zeros and Poles 6.4.3 path Nyquist 6.4.2 zeros and poles around Contours 6.4.1 criterion stability Nyquist 6.4 plots Polar 6.3.2 diagrams Bode 6.3.1 representations graphical Common 6.3 response frequency and response time between Relationship 6.2.1 response time and response frequency between Relationship 6.2 resistance at output circuit: RLC series A 6.1.4 capacitance at output circuit: RLC series A 6.1.3 resistance at output circuit: RC series A 6.1.2 capacitance at output circuit: RC series A 6.1.1 circuits electric some of response Frequency 6.1 design response-based Frequency 6. Exercises 5.4 motor DC brushed magnet permanent a for position of control PID on notes Additional study. of Case 5.3 system beam and ball a for poles desired the Assigning 5.2.9 system beam and ball a of Control 5.2.8 plant unstable an of control (PID) Proportional-integral-derivative 5.2.7 poles closed-loop desired the Assigning 5.2.6 position of control (PID) Proportional-integral-derivative 5.2.5 velocity of control (PI) Proportional-integral 5.2.4 lead-compensator a using control Position 5.2.3 position of control (PD) Proportional-derivative 5.2.2 position of control Proportional 5.2.1 design and analysis locus-based Root 5.2 diagram locus root the draw to Rules 5.1.1 diagram locus root the Drawing 5.1 design response-based Time Exercises 5. 4.5 output desired Parabola 4.4.3 output desired Ramp 4.4.2 output desired Step 4.4.1 error state Steady 4.4 criterion stability Routh's 4.3 3 to equal or than greater degree with Polynomials 4.2.3 polynomials degree First 4.2.2 polynomials degree Second 4.2.1 signs of Rule 4.2 diagrams Block 4.1 error state steady and criteria Stability 4. Exercises 3.10 converter electronic power resonant series high-frequency DC-to-DC A study. of Case 3.9 systems order first of control PID and PI Proportional, 3.8.5 motor DC a of control velocity Proportional-integral 3.8.4 motor DC a of control position Proportional-derivative 3.8.3 motor DC a for feedback velocity plus control position Proportional 3.8.2 motor DC a in velocity of control Proportional 3.8.1 systems order second and first Controlling 3.8 principle superposition The 3.7 excitations sinusoidal of case The 3.6 systems higher-order of response transitory Approximating 3.5.3 models order reduced and poles Dominant 3.5.2 models order reduced and cancellation Pole-zero 3.5.1 systems higher-order in zeros and Poles 3.5 Conclusions 3.4.5 roots repeated and conjugated Complex 3.4.4 roots repeated not and conjugated Complex 3.4.3 roots repeated and Real 3.4.2 roots different and Real 3.4.1 equations differential order Arbitrary 3.4 function Transfer 3.3.2 solution of study Graphical 3.3.1 equation differential order Second 3.3 integrator An 3.2 function Transfer 3.1.2 solution the of study Graphical 3.1.1 equation differential order First 3.1 equations differential linear Ordinary 3. Exercises 2.6 converter power resonant series high-frequency DC-to-DC A study. of case A 2.5 Electromagnet 2.4.2 motor DC brushed magnet permanent a of Armature 2.4.1 Converters 2.4 pinion and Rack 2.3.3 reducer Gear 2.3.2 transformer Electric 2.3.1 Transformers 2.3 systems Electrical 2.2 systems mechanical Rotative 2.1.2 systems mechanical Translational 2.1.1 systems Mechanical 2.1 modeling system Physical 2. prototypes Didactic 1.3 control automatic of History 1.2 system control gun anti-aircraft An 1.1 Introduction 1. zum Stöbern animieren Verbraucher nutzen Suchmaschinenoptimierung Für Onlinehändler ist Mass Customization ein wichtiger Begriff die möglichst allumfassend sein sollen.
Verwirrt? Link zum original Text
EAN: | 9783030093303 |
Marke: | Springer Berlin,Springer |
weitere Infos: | MPN: 81222536 |
im Moment nicht an Lager | |
Online Shop: | eUniverse |