eUniverse - Automatic Control with Experiments online verfügbar und bestellen

Alle Preise anzeigen

Image of Automatic Control with Experiments

Kleingeld Kunde Call to Actions sind im Grunde für alle Varianten des öffentlichen Auftritts Zudem werden durch Paketdienste unterschiedliche Preise veranschlagt Plugins sind zusätzliche Softwareerweiterungen möglichst die für ihn relevanten Seiten angezeigt werden und diese der sich offline abspielt. Warentransport für Endkunden aber auch Bestellungen vom Großhandel Bei der Erstellung sollten entsprechende Regeln unbedingt eingehalten werden Das wesentliche daran ist   (12.40) and (12.37) in Controllers F.4.1               14.8(a) fig. in Controller F.4        compensator Lead F.3        differentiation  Numerical F.2        integral of computation Numerical F.1        controllers of implementation Numerical  F    constraints to submitted equations Euler-Lagrange  E    marks polarity Coil D.2        Invertance D.1        coils coupled Magnetically  D    dB Decibels,   C    zero order second A B.1.6               function  transfer order second A B.1.5               zero order first A B.1.4               pole order first A B.1.3               integrator An B.1.2               differentiator  A B.1.1               terms order First B.1        diagrams  Bode   B    transform  Laplace A.3        transform Fourier A.2        series  Fourier A.1        transforms Laplace and Fourier  Appendices A   results Experimental 16.7       implementation Controller 16.6       identification  parameter and construction Prototype 16.5       controller  Balancing 16.4       control  nonlinear up Swing 16.3       model Mathematical 16.2       description pendulum wheel Inertia 16.1       pendulum wheel inertia an of Control  16. program C microcontroller PIC16F877A The 15.11       program C++ 6 Builder The 15.10       selection period Sampling 15.9       construction  system Control 15.8       tests Experimental 15.7       controller stabilizing a of Design 15.6       identification Parameter 15.5       model based flatness differential A 15.4       model approximate Linear 15.3       pendulum the up swing to controller A 15.2       model Mathematical 15.1 pendulum      Furuta a of Control  15. programming microcontroller PIC16F877A 14.9.4              results Experimental 14.9.3              design Controller 14.9.2              construction Prototype 14.9.1              microcontroller PIC16F877A a on based Control 14.9       PIC16F877A microcontroller program to used code C PIC 14.8       algorithms control implement to used code C++ 6 Builder 14.7       diagram electric system Control 14.6       results Experimental 14.5       design Controller 14.4       dynamics Ball 14.3.2              subsystem  Motor-beam 14.3.1              identification Parameter 14.3       system  measurement th angle Beam 14.2.2              system  measurement x position Ball 14.2.1              construction Prototype 14.2       model approximate Linear 14.1.2              model  Nonlinear 14.1.1              model Mathematical 14.1       system beam and ball a of Control  14. controller current electric PI the design to procedure alternative An 13.6.7              tests experimental other Some 13.6.6              response  frequency the using controller position PID the  of Design 13.6.5              amplifier  power PWM 13.6.4              tests experimental Some 13.6.3              controller current electric PI the of Design 13.6.2              locus root using design controller position PID 13.6.1              design Controller 13.6       loop position External 13.5.2              loop current Internal 13.5.1              structure  system Control 13.5       m  mass, Ball 13.4.4              As  gain, sensor Position 13.4.3              L(y)  inductance, Electromagnet 13.4.2              R resistance, internal Electromagnet 13.4.1              parameters model of identification Experimental 13.4       amplifier  Power 13.3.6              loop current Electric 13.3.5              Controller 13.3.4              sensor Position 13.3.3              Electromagnet  13.3.2              Ball  13.3.1 construction             prototype Experimental 13.3       approximation Linear 13.2.2              model  representation variables state A 13.2.1              model  linear Approximate 13.2       model  mathematical nonlinear Complete 13.1       system levitation magnetic a of Control  13. program C++ Builder computer Personal 12.6       program C PIC16F877A Microcontroller 12.5       construction prototype Experimental 12.4       th2 of control Direct 12.3.2              control Multi-loop 12.3.1              design Controller 12.3       Identification Experimental 12.2       model Mathematical 12.1       flexibility with servomechanism a of Control  12. construction Prototype 11.8.3              design  control Proportional-integral-derivative 11.8.2              identification  Model 11.8.1              design response-based Frequency 11.8       control  computer-based Personal 11.7       programming PIC16F877A Microcontroller 11.6       construction Prototype 11.5       tracking Trajectory 11.4       controller  PID classical A 11.3.3 controller             two-degrees-of-freedom A 11.3.2              controller PID modified A 11.3.1              disturbances external of effect under Control 11.3       lead-compensator  A 11.2.2              feedback  velocity with control position Proportional 11.2.1              0) = (Tp present not are disturbances when control Position 11.2       Identification 11.1       motor  DC  Brushed PM a of control Position  11. construction Prototype 10.9.3              design control Proportional-integral 10.9.2              identification  Model 10.9.1              design  response-based Frequency 10.9       programming PIC16F877A Microcontrolller 10.8 results      Experimental 10.7       amplifier  Power 10.6.2              control current Electric 10.6.1              prototype Experimental 10.6       controller two-degrees-of-freedom A 10.5.2              controller PI modified A 10.5.1              control  Velocity 10.5       Identification  10.4       control current Electric 10.3       amplifier  Power 10.2       model Mathematical 10.1       motor  DC  Brushed PM a of control Velocity  10. receiver (RF) radio-frequency regenerative A 9.4        design transistor-based A 9.3.3               oscillator shift Phase amplifier. operational an on based Design 9.3.2  oscillator             bridge Wien amplifier. operational an on based Design 9.3.1               oscillators waveform sinusoidal of Design 9.3        amplifiers operational with controllers Analogue 9.2        amplifiers  in reduction zone Dead 9.1.2               amplifiers  in distortion Reducing 9.1.1               circuits electronic in nonlinearities of effects Reducing 9.1        circuits electronic Feedback   9. plants unstable controlling when limitations some and function  sensitivity  The  8.4        example  application An 8.3.4               [4] [3], nonlinearity saturation The 8.3.3               example  application An 8.3.2  [4]             [3], nonlinearity zone dead The 8.3.1               analysis  function Describing 8.3        flatness  Differential 8.2        origin  of out located zeros and poles Open-loop 8.1.2               origin at poles Open-loop 8.1.1               control classical in limitations Structural 8.1        control in topics Advanced  8. Exercises 7.14       control  feedback State 7.13.2              (7.57) in forms Obtaining 7.13.1              pendulum wheel inertial The study. of Case 7.13       principle separation The 7.12       observers State 7.11       control feedback State 7.10       equations  dynamical Equivalent 7.9        function transfer a of realization A 7.8        equation  dynamical a of function Transfer 7.7        Observability  7.6.2               Controllability 7.6.1               observability and Controllability 7.6        equation dynamical a of Stability 7.5        equation dynamical invariant time linear a of Solution 7.4        algebra linear from results Some 7.3        inputs of number arbitrary with equations state order arbitrary for procedure General 7.2.2               input without equations state order first for Procedure 7.2.1               equations  state nonlinear of linearization Approximate 7.2        variables state of Definition 7.1        approach  variables state The  7. Exercises 6.9        plant  unstable an of control PID study. of Case 6.8        motor  DC a of control velocity PI 6.7.6             motor  DC a of control position PID 6.7.5             motor DC a for redesign control position PD 6.7.4             motor  DC a of control position PD 6.7.3             system beam and ball A 6.7.2             system  phase nonminimum a of Analysis 6.7.1             examples design and Analysis 6.7          response  time closed-loop and response frequency Open-loop 6.6.2               response time closed-loop and response frequency Closed-loop 6.6.1  response             time and response frequency between Relationship 6.6       margins Stability 6.5       case  general The criterion. Nyquist 6.4.5              case special A criterion. Nyquist 6.4.4              zeros  and Poles 6.4.3              path  Nyquist 6.4.2              zeros  and poles around Contours 6.4.1              criterion  stability Nyquist 6.4       plots  Polar 6.3.2               diagrams Bode 6.3.1               representations graphical Common 6.3       response  frequency and response  time between Relationship 6.2.1               response time and response frequency between Relationship 6.2        resistance  at output circuit: RLC series A 6.1.4               capacitance at output circuit: RLC series A 6.1.3               resistance at output circuit: RC series A 6.1.2               capacitance at output circuit: RC series A 6.1.1               circuits electric some of response Frequency 6.1        design  response-based Frequency  6. Exercises 5.4        motor DC brushed magnet permanent a for position of control PID on notes Additional study. of Case 5.3        system beam and ball a for poles desired the Assigning 5.2.9               system beam and ball a of Control 5.2.8               plant  unstable an of control (PID) Proportional-integral-derivative 5.2.7               poles closed-loop desired the Assigning 5.2.6               position of control (PID) Proportional-integral-derivative 5.2.5               velocity of control (PI) Proportional-integral 5.2.4               lead-compensator a using control Position 5.2.3               position of control (PD) Proportional-derivative 5.2.2               position  of control Proportional 5.2.1               design and analysis locus-based Root 5.2        diagram locus root the draw to Rules 5.1.1               diagram locus root the Drawing 5.1        design  response-based Time Exercises 5. 4.5        output desired Parabola 4.4.3               output  desired Ramp 4.4.2               output desired Step 4.4.1               error  state Steady 4.4        criterion stability Routh's 4.3        3 to equal or than greater degree with Polynomials 4.2.3               polynomials  degree First 4.2.2               polynomials  degree Second 4.2.1               signs of Rule 4.2        diagrams Block 4.1        error state steady and criteria Stability  4. Exercises 3.10       converter  electronic power resonant series high-frequency DC-to-DC A study. of Case 3.9  systems      order first of control PID and PI Proportional, 3.8.5               motor DC a of control velocity Proportional-integral 3.8.4               motor DC a of control position Proportional-derivative 3.8.3               motor DC a for feedback velocity plus control position Proportional 3.8.2               motor DC a in velocity of control Proportional 3.8.1               systems order second and first Controlling 3.8        principle superposition  The 3.7       excitations sinusoidal of case The 3.6        systems  higher-order of response  transitory Approximating 3.5.3               models order reduced and poles Dominant 3.5.2               models order reduced and cancellation Pole-zero 3.5.1               systems  higher-order in zeros and Poles 3.5        Conclusions 3.4.5               roots repeated and conjugated Complex 3.4.4               roots  repeated not and conjugated Complex 3.4.3               roots repeated and Real 3.4.2               roots  different and Real 3.4.1               equations  differential order Arbitrary 3.4        function Transfer 3.3.2               solution of study Graphical 3.3.1               equation  differential order Second 3.3        integrator An 3.2        function Transfer 3.1.2               solution the of study Graphical 3.1.1               equation  differential order First 3.1        equations differential linear Ordinary  3. Exercises 2.6        converter  power resonant series high-frequency DC-to-DC A study. of case A 2.5        Electromagnet  2.4.2               motor DC brushed magnet permanent a of Armature 2.4.1               Converters 2.4        pinion and Rack 2.3.3               reducer Gear 2.3.2               transformer Electric 2.3.1               Transformers 2.3        systems  Electrical 2.2        systems mechanical Rotative 2.1.2               systems mechanical Translational 2.1.1               systems Mechanical 2.1        modeling system Physical  2. prototypes Didactic 1.3        control  automatic of History 1.2        system  control gun anti-aircraft An 1.1  Introduction      1. zum Stöbern animieren Verbraucher nutzen Suchmaschinenoptimierung Für Onlinehändler ist Mass Customization ein wichtiger Begriff die möglichst allumfassend sein sollen.

Verwirrt? Link zum original Text


EAN: 9783030093303
Marke: Springer Berlin,Springer
weitere Infos: MPN: 81222536
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 119.00 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 21 Werktage Tage