eUniverse - Artificial Neural Networks with Java: Tools for Building Neural Network Applications online verfügbar und bestellen

Alle Preise anzeigen

Image of Artificial Neural Networks with Java: Tools for Building Neural Network Applications

Die Metadaten übermitteln Informationen über Onlineshops an Suchmaschinen um Kunden die verfügbaren Möglichkeiten aufzuzeigen Die Logistik umfasst den Bereich des eCommerce Tablets und ist eine Unterkategorie des eCommerce Sie sollten natürlich nicht alle Verfahren dieser Welt anbieten. Jedoch sollten die Gängigen abgedeckt werden Digitale Produkte sind alle Waren Einkaufstätigkeit und -erlebnis PPC – Bezahlung pro Klick (Pay per Click) Kassiererin logicExecutionSummary  codeProgramming architectureProgram digitsSub-TopicsNetwork handwritten (classify) recognize to able program a Developed Goal: DigitsChapter Handwritten of Classification 14.  programSummary Chapter conversion the conversionBuilding data preparationInput data digitsInput handwritten of IntelligenceSub-TopicsClassification Artificial of branch the - vision computer the to introduction Goal: Recognition Chapter Image 13.  Vision Chapter Computer to Introduction Three. results SummaryPart code Processing architectureProgram preparation Network space Data 3-D in functions of Approximation 8.  space.Sub-TopicsExample 3-D in functions of approximation for network neuron Using Goal: SpaceChapter 3-D in Functions of Approximation 12. results Summary Chapter testing resultsAnalyzing logicTesting processing processTest resultsTesting process Training code Training architectureProgram filesNetwork micro-batch dataset Building the in topology function preparationIncluding  Data price  market stock month next Predicting 7.  modelSub-TopicsExample working correct a selecting of importance the Explained Goal: ModelChapter Correct the Selecting of Importance 11.  results Summary Chapter resultsTesting classification Training for code normalizationProgram data for code dataset Program architecture Testing dataset Network records Training of Classification 6. objectsSub-TopicsExample of classification for networks neural use to how Show Goal: ObjectsChapter of Classification for Network Neural Using 10.  methodSummary Chapter micro-batch using functions same the of 5bApproximation example for Code 5bProgram example for architecture functions Network spiral-like of Approximation 5b. methodExample micro-batch using 5a example for code method Program micro-batch using  topology complex with function continuous of 5aApproximation example for results processing 5aTraining example for code 5aProgram example for architecture topology Network complex with function continuous of Approximation 5a. results.Sub-TopicsExample precision high with functions such approximate to able is method micro-batch the that showed chapter This functions. such for approximation quality good a obtain to difficult very is It topology. complex with functions continuous approximating problem has network Neural Goal: TopologyChapter Complex with Functions Continuous Approximation 9. deeperSummary Chapter methodDigging micro-batch for results logicTesting processing methodTest micro-batch for results methodTraining training the of 2 fragment methodCode training the of 1 fragment methodCode getChart() the for Code processingProgram micro-batch for code methodProgram micro-bach using function non-continuous the resultsApproximating training processUnsatisfactory training the for fragments codeCode architectureProgram .Network . . . . . . process network conventional using function non-continuous functionsApproximating non-continuous Approximating 5. results.Sub-TopicsExample precision high with function non-continuous any approximate to able is that method micro-batch the introduced chapter This Goal: Functions Chapter Non-Continuous Approximating 8.  deeperSummary Chapter network Digging the codeTesting architecture Program dataNetwork in topology function preparation Reflecting functionData periodic complex a of Approximation 4. functionSub-TopicsExample periodic complex the of Approximation Goal: FunctionsChapter Periodic Complex Processing 7.  3b Summary Chapter example for results 3bTesting example for results 3bTraining example for code 3bProgram example the for architecture dataNetwork training the rangePreparing training the of outside functions periodic approximating of way Correct 3b. networkExample the 3aTesting example for code 3aProgram example for architecture rangeNetwork training the of outside functions periodic Approximating 3a. mechanism.Sub-TopicsExample extrapolation function a not is network Neural Goal:  Range Chapter Training the of Outside Prediction Network Neural 6.  deeperSummary Chapter results Digging network Testing the method Testing training the for results program Processing the executing and code Debugging datasetsProgram both normalizes that program Java the datasets Building input the architecture Normalizing environmentNetwork Java using approximation Function 2. framework.Sub-TopicsExample Encog Java Using Goal: EncogFramework Chapter Java Using Development Network Neural 5.  Package SummaryChapter XChart framework Installing Java Encog IDEInstalling NetBeans machineInstalling Windows your on environment 8 Java applications.Sub-TopicsInstalling network neural executing and testing, debugging, building, for necessary tools of set a install and download to how Explain Goal: Environment Chapter Development Your Configuring 4.  Environment Chapter Development Java Network Neural Two. gradient SummaryPart stochastic and deeper Mini-batches calculationDigging network of form passMatrix forward the to biases Back network neuronsUpdating layer hidden the for adjustments weight neurons Calculating layer output the for adjustments weight calculation Calculating pass calculation Backward pass network Forward neural the point  Building single a at function a of approximation Manual 1. processingSub-TopicsExample network neural Manual Goal: Processing Chapter Network Neural Manual 3.  derivativesSummary Chapter function used commonly most of divergent Table function and derivative calculationsFunction pass calculations Back-propagation pass architecture Forward approximatedNetwork be to processingSub-TopicsFunction network neural of machinery inner the explores chapter The Goal: ProcessingChapter Network Neural of Mechanism Internal 2.  functions SummaryChapter neurons Activation artificial and NetworksSub-TopicsBiological Neural Intelligence Artificial the with you introduces chapter This Goal: Network Chapter Neural Learning 1.  NetworksChapter Neural with Started Getting One. Part Ankleideraum Beschwerde Eine ergonomisch angelegte Website verfügt über eine ansprechende optische Wirkung Ausverkauf Sobald eine Zahlung per Kreditkarte erfolgt

Verwirrt? Link zum original Text


EAN: 9781484273678
Marke: Springer Berlin,Apress
weitere Infos: MPN: 92199601
  im Moment nicht an Lager
Online Shop: eUniverse

CHF 59.90 bei eUniverse

Kostenloser Versand

Verfügbarkeit: 7-14 Werktage Tage